Mushinski Ryan M, Payne Zachary C, Raff Jonathan D, Craig Matthew E, Pusede Sally E, Rusch Douglas B, White Jeffrey R, Phillips Richard P
School of Life Sciences, University of Warwick, Coventry, UK.
O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA.
Glob Chang Biol. 2020 Dec 15;27(5):1068-82. doi: 10.1111/gcb.15439.
Volatile nitrogen oxides (N O, NO, NO , HONO, …) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory trees, leading to predictable N-cycling syndromes, with consequences for emissions of volatile nitrogen oxides to air. Trees associating with arbuscular mycorrhizal (AM) fungi promote soil microbial communities with higher N-cycle potential and activity, relative to microbial communities in soils dominated by trees associating with ectomycorrhizal (ECM) fungi. Metagenomic analysis and gene expression studies reveal a 5 and 3.5 times greater estimated N-cycle gene and transcript copy numbers, respectively, in AM relative to ECM soil. Furthermore, we observe a 60% linear decrease in volatile reactive nitrogen gas flux (NO ≡ NO, NO , HONO) as ECM tree abundance increases. Compared to oxic conditions, gas flux potential of N O and NO increase significantly under anoxic conditions for AM soil (30- and 120-fold increase), but not ECM soil-likely owing to small concentrations of available substrate ( ) in ECM soil. Linear mixed effects modeling shows that ECM tree abundance, microbial process rates, and geographic location are primarily responsible for variation in peak potential NO flux. Given that nearly all tree species associate with either AM or ECM fungi, our results indicate that the consequences of tree species shifts associated with global change may have predictable consequences for soil N cycling.
挥发性氮氧化物(NO、NO₂、NO₃、HONO等)会对气候、空气质量和人类健康产生负面影响。我们利用从美国东部温带森林采集的土壤样本发现,参与氮循环的微生物群落很大程度上由上层树木的组成结构决定,从而导致可预测的氮循环模式,并对空气中挥发性氮氧化物的排放产生影响。与外生菌根(ECM)真菌共生的树木主导的土壤微生物群落相比,与丛枝菌根(AM)真菌共生的树木促进了具有更高氮循环潜力和活性的土壤微生物群落的形成。宏基因组分析和基因表达研究表明,相对于ECM土壤,AM土壤中估计的氮循环基因和转录本拷贝数分别高出5倍和3.5倍。此外,我们观察到随着ECM树木丰度的增加,挥发性活性氮气通量(NOₓ≡NO、NO₂、HONO)呈60%的线性下降。与有氧条件相比,AM土壤在缺氧条件下N₂O和NO的气体通量潜力显著增加(分别增加30倍和120倍),但ECM土壤则不然,这可能是由于ECM土壤中可用底物( )浓度较低所致。线性混合效应模型显示,ECM树木丰度、微生物过程速率和地理位置是导致潜在NO通量峰值变化的主要因素。鉴于几乎所有树种都与AM或ECM真菌共生,我们的研究结果表明,与全球变化相关的树种变化可能会对土壤氮循环产生可预测的影响。