Suppr超能文献

探索分子聚集体的结构与动力学:超快时间分辨电子衍射测量

Exploring Structures and Dynamics of Molecular Assemblies: Ultrafast Time-Resolved Electron Diffraction Measurements.

作者信息

Hada Masaki, Nishina Yuta, Kato Takashi

机构信息

Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan.

Graduate School of Natural Science and Technology, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.

出版信息

Acc Chem Res. 2021 Feb 2;54(3):731-743. doi: 10.1021/acs.accounts.0c00576. Epub 2020 Dec 15.

Abstract

ConspectusMolecular assemblies have been widely applied to functional soft materials in a variety of fields. Liquid crystal is one of the representative molecular soft materials in which weak intermolecular interactions induce its dynamic molecular behavior under external stimuli, such as electric and magnetic fields, photoirradiation, and thermal treatment. It is important to understand molecular behavior and motion in the liquid-crystalline (LC) states at the picosecond level for further functionalization of liquid crystals and molecular assembled materials. For investigation of assembled structures of the materials on the nanometer scale, X-ray diffraction (XRD) measurements have been a powerful tool. Despite the dynamic nature of the assembled materials, however, time resolution of XRD is limited to millisecond due to the response speed of the detector, which hampered real-time observation of the dynamics of the molecular assembly. For further understanding of the dynamic behavior of functional molecules and improvement of performance for their applications, the insights of faster dynamics on the micro-, nano-, pico-, and even femtosecond time scales are required. In this context, the interdisciplinary approaches of the emerging fields of materials chemistry and ultrafast science will open up new aspects of molecular science and technology. These approaches may lead to more effective design of new functional materials, which enables us to control molecular behaviors and motions.The development of ultrashort pulsed X-ray and electron sources has resulted in the visualization of the key structural dynamics on the femto- to picosecond time scale not only in isolated molecules but also in assembled molecules, such as in the LC, crystal, and amorphous phases. We focus on ultrafast phenomena in molecular assemblies induced by photoexcitation. Ultrafast time-resolved electron diffraction measurements are sensitive to the molecular periodicity under photoexcitation, and thus the methodologies directly provide the ultrafast photoinduced molecular dynamic arrangements.In this Account, we describe ultrafast structural dynamics of molecules in the LC phases observed by time-resolved electron diffraction measurements. Photoinduced conformational changes of LC molecules is shown as the example, which is the first observation of LC molecule using time-resolved electron diffraction. It is important to understand the correlation between the conformational or configurational changes induced in a photoirradiated single molecule and the oriented collective motions of molecular assemblies induced by intermolecular interaction. We also show observation of collective motions of azobenzene LC molecules. The collective motions are initiated from photoreaction in a single molecule and are subsequently amplified by the steric interaction with its neighboring molecules.One remaining challenge is to create the platform of materials and sample preparations for time-resolved electron diffraction experiments, which can only be achieved by the interdisciplinary fusion of the fields of materials chemistry and ultrafast science. Time-resolved electron diffraction is a powerful tool for structural investigation of molecular materials with a dynamic nature, whose adaptability goes beyond that of more complex assemblies of carbon nanomaterials. This methodology will extend the possibility to investigate motions of a variety of molecular self-assemblies on a larger scale, for example, to understand responses of biomolecular assemblies and intermolecular chemical reactions.

摘要

综述

分子组装体已被广泛应用于各个领域的功能性软材料中。液晶是具有代表性的分子软材料之一,其中弱分子间相互作用在电场、磁场、光辐照和热处理等外部刺激下诱导其动态分子行为。为了进一步实现液晶和分子组装材料的功能化,在皮秒水平上理解液晶(LC)态下的分子行为和运动非常重要。对于研究纳米尺度材料的组装结构,X射线衍射(XRD)测量一直是一种强大的工具。然而,尽管组装材料具有动态性质,但由于探测器的响应速度,XRD的时间分辨率限制在毫秒级,这阻碍了对分子组装动力学的实时观察。为了进一步理解功能分子的动态行为并提高其应用性能,需要在微秒、纳秒、皮秒甚至飞秒时间尺度上获得更快动力学的见解。在这种背景下,材料化学和超快科学等新兴领域的跨学科方法将开辟分子科学和技术的新领域。这些方法可能会导致新功能材料的更有效设计,使我们能够控制分子行为和运动。

超短脉冲X射线和电子源的发展使得不仅在孤立分子中,而且在组装分子中,如在液晶、晶体和非晶相中,在飞秒到皮秒时间尺度上实现了关键结构动力学的可视化。我们关注光激发诱导的分子组装体中的超快现象。超快时间分辨电子衍射测量对光激发下的分子周期性敏感,因此这些方法直接提供超快光诱导的分子动态排列。

在本综述中,我们描述了通过时间分辨电子衍射测量观察到的液晶相中分子的超快结构动力学。以液晶分子的光诱导构象变化为例,这是首次使用时间分辨电子衍射对液晶分子进行的观察。理解光照射下单分子诱导的构象或构型变化与分子间相互作用诱导的分子组装体的取向集体运动之间的相关性很重要。我们还展示了对偶氮苯液晶分子集体运动的观察。集体运动由单分子中的光反应引发,随后通过与其相邻分子的空间相互作用放大。

剩下的一个挑战是创建用于时间分辨电子衍射实验的材料和样品制备平台,这只能通过材料化学和超快科学领域的跨学科融合来实现。时间分辨电子衍射是研究具有动态性质的分子材料结构的强大工具,其适用性超越了碳纳米材料等更复杂的组装体。这种方法将扩大在更大规模上研究各种分子自组装运动的可能性,例如,理解生物分子组装体的响应和分子间化学反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验