Suppr超能文献

面向用于预测多种有机化合物的血脑屏障渗透性的深度神经网络模型。

Towards Deep Neural Network Models for the Prediction of the Blood-Brain Barrier Permeability for Diverse Organic Compounds.

机构信息

Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.

出版信息

Molecules. 2020 Dec 13;25(24):5901. doi: 10.3390/molecules25245901.

Abstract

Permeation through the blood-brain barrier (BBB) is among the most important processes controlling the pharmacokinetic properties of drugs and other bioactive compounds. Using the fragmental (substructural) descriptors representing the occurrence number of various substructures, as well as the artificial neural network approach and the double cross-validation procedure, we have developed a predictive in silico model based on an extensive and verified dataset (529 compounds), which is applicable to diverse drugs and drug-like compounds. The model has good predictivity parameters (Q2=0.815, RMSEcv=0.318) that are similar to or better than those of the most reliable models available in the literature. Larger datasets, and perhaps more sophisticated network architectures, are required to realize the full potential of deep neural networks. The analysis of fragment contributions reveals patterns of influence consistent with the known concepts of structural characteristics that affect the BBB permeability of organic compounds. The external validation of the model confirms good agreement between the predicted and experimental values for most of the compounds. The model enables the evaluation and optimization of the BBB permeability of potential neuroactive agents and other drug compounds.

摘要

血脑屏障(BBB)的渗透是控制药物和其他生物活性化合物药代动力学特性的最重要过程之一。我们使用代表各种子结构出现次数的片段(子结构)描述符,以及人工神经网络方法和双重交叉验证程序,基于广泛验证的数据集(529 种化合物)开发了一种可应用于各种药物和类药化合物的预测性计算模型。该模型具有良好的预测参数(Q2=0.815,RMSEcv=0.318),与文献中最可靠的模型相当或更好。需要更大的数据集和更复杂的网络架构来实现深度神经网络的全部潜力。片段贡献的分析揭示了与影响有机化合物 BBB 渗透性的已知结构特征概念一致的影响模式。该模型的外部验证证实了大多数化合物的预测值与实验值之间具有良好的一致性。该模型能够评估和优化潜在神经活性药物和其他药物化合物的 BBB 渗透性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b400/7763607/9e72400c5104/molecules-25-05901-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验