Suppr超能文献

评估小分子进入中枢神经系统的实验和计算方法。

Experimental and Computational Methods to Assess Central Nervous System Penetration of Small Molecules.

机构信息

Department of Modeling and Informatics, Merck & Co., Inc., Rahway, NJ 07065, USA.

Department of Computational Chemistry, Cellarity, 101 South Street L6, Somerville, MA 02143, USA.

出版信息

Molecules. 2024 Mar 13;29(6):1264. doi: 10.3390/molecules29061264.

Abstract

In CNS drug discovery, the estimation of brain exposure to lead compounds is critical for their optimization. Compounds need to cross the blood-brain barrier (BBB) to reach the pharmacological targets in the CNS. The BBB is a complex system involving passive and active mechanisms of transport and efflux transporters such as P-glycoproteins (P-gp) and breast cancer resistance protein (BCRP), which play an essential role in CNS penetration of small molecules. Several in vivo, in vitro, and in silico methods are available to estimate human brain penetration. Preclinical species are used as in vivo models to understand unbound brain exposure by deriving the Kp,uu parameter and the brain/plasma ratio of exposure corrected with the plasma and brain free fraction. The MDCK-mdr1 (Madin Darby canine kidney cells transfected with the MDR1 gene encoding for the human P-gp) assay is the commonly used in vitro assay to estimate compound permeability and human efflux. The in silico methods to predict brain exposure, such as CNS MPO, CNS BBB scores, and various machine learning models, help save costs and speed up compound discovery and optimization at all stages. These methods enable the screening of virtual compounds, building of a CNS penetrable compounds library, and optimization of lead molecules for CNS penetration. Therefore, it is crucial to understand the reliability and ability of these methods to predict CNS penetration. We review the in silico, in vitro, and in vivo data and their correlation with each other, as well as assess published experimental and computational approaches to predict the BBB penetrability of compounds.

摘要

在中枢神经系统(CNS)药物发现中,评估先导化合物的脑内暴露量对于其优化至关重要。化合物需要穿过血脑屏障(BBB)才能到达 CNS 中的药理靶点。BBB 是一个复杂的系统,涉及被动和主动转运机制以及外排转运体,如 P 糖蛋白(P-gp)和乳腺癌耐药蛋白(BCRP),它们在小分子进入 CNS 中发挥着重要作用。有几种体内、体外和计算方法可用于估计人类脑穿透性。临床前物种被用作体内模型,通过推导 Kp,uu 参数和校正血浆和脑游离分数的脑/血浆暴露比来了解未结合的脑暴露。MDCK-mdr1(转染有编码人 P-gp 的 MDR1 基因的 Madin Darby 犬肾细胞)测定是常用的体外测定方法,用于估计化合物的通透性和人外排。预测脑暴露的计算方法,如 CNS MPO、CNS BBB 评分和各种机器学习模型,有助于节省成本并加速化合物在各个阶段的发现和优化。这些方法可以筛选虚拟化合物、构建可穿透 CNS 的化合物库,并优化用于 CNS 穿透的先导分子。因此,了解这些方法预测 CNS 穿透的可靠性和能力至关重要。我们回顾了体内、体外和体内数据及其相互之间的相关性,并评估了预测化合物 BBB 穿透性的已发表的实验和计算方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c185/10975190/3266026fa372/molecules-29-01264-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验