The Courtauld Institute of Art, Somerset House, Strand, London WC2R 0RN, UK.
Centre de Recherche sur la Conservation, (CRC, USR 3224), Muséum National d'Histoire Naturelle, Ministère de la Culture et de la Communication, CNRS, 36 rue Geoffroy-Saint-Hilaire, CP21, 75005 Paris, France.
Sensors (Basel). 2020 Dec 12;20(24):7125. doi: 10.3390/s20247125.
This paper presents results from the examination of a set of experimental samples using fibre optic reflectance spectroscopy (FORS) and diffuse reflectance imaging spectroscopy in the short-wave infrared (SWIR) range, combined with statistical analysis of the data for the discrimination and mapping of poppy and linseed oil. The aim was to evaluate the efficacy of this non-invasive approach for the study of paint samples with a view to the application of the method for characterisation of the two drying oils in painted art. The approach allowed discrimination between the two drying oils based on FORS spectra and the hyperspectral cube, indicating the influence of the spectral region around 1700 nm on the statistical discrimination based on the anti-symmetric and symmetric first overtone stretching of methylenic CH groups. This method is being studied as a potential non-invasive method of organic analysis of oil types that have formerly been studied using gas chromatography-mass spectrometry (GC-MS), which requires micro-samples.
本文介绍了使用光纤反射光谱(FORS)和短波长近红外(SWIR)漫反射成像光谱对一组实验样本进行检查的结果,结合数据的统计分析,对罂粟籽油和亚麻籽油进行了区分和绘制。目的是评估这种非侵入性方法在研究油漆样本方面的有效性,以期将该方法应用于绘制艺术中两种干性油的特性。该方法可以根据 FORS 光谱和高光谱立方体区分两种干性油,表明光谱区域在 1700nm 左右对基于亚甲基 CH 基团反对称和对称第一泛频伸缩的统计区分的影响。该方法正在作为一种潜在的非侵入性有机分析方法进行研究,用于分析以前使用气相色谱-质谱联用(GC-MS)研究过的油性物质,该方法需要使用微样本。