Boniolo Manuel, Chernev Petko, Cheah Mun Hon, Heizmann Philipp A, Huang Ping, Shylin Sergii I, Salhi Nessima, Hossain Md Kamal, Gupta Arvind K, Messinger Johannes, Thapper Anders, Lundberg Marcus
Molecular Biomimetics, Department of Chemistry -Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden.
Dalton Trans. 2021 Jan 14;50(2):660-674. doi: 10.1039/d0dt03695a. Epub 2020 Dec 16.
Developing new transition metal catalysts requires understanding of how both metal and ligand properties determine reactivity. Since metal complexes bearing ligands of the Py5 family (2,6-bis-[(2-pyridyl)methyl]pyridine) have been employed in many fields in the past 20 years, we set out here to understand their redox properties by studying a series of base metal ions (M = Mn, Fe, Co, and Ni) within the Py5OH (pyridine-2,6-diylbis[di-(pyridin-2-yl)methanol]) variant. Both reduced (M) and the one-electron oxidized (M) species were carefully characterized using a combination of X-ray crystallography, X-ray absorption spectroscopy, cyclic voltammetry, and density-functional theory calculations. The observed metal-ligand interactions and electrochemical properties do not always follow consistent trends along the periodic table. We demonstrate that this observation cannot be explained by only considering orbital and geometric relaxation, and that spin multiplicity changes needed to be included into the DFT calculations to reproduce and understand these trends. In addition, exchange reactions of the sixth ligand coordinated to the metal, were analysed. Finally, by including published data of the extensively characterised Py5OMe (pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane])complexes, the special characteristics of the less common Py5OH ligand were extracted. This comparison highlights the non-innocent effect of the distal OH functionalization on the geometry, and consequently on the electronic structure of the metal complexes. Together, this gives a complete analysis of metal and ligand degrees of freedom for these base metal complexes, while also providing general insights into how to control electrochemical processes of transition metal complexes.
开发新型过渡金属催化剂需要了解金属和配体的性质如何决定反应活性。由于过去20年中,带有Py5家族配体(2,6-双-[(2-吡啶基)甲基]吡啶)的金属配合物已在许多领域得到应用,我们在此着手通过研究Py5OH(吡啶-2,6-二基双[二-(吡啶-2-基)甲醇])变体中的一系列贱金属离子(M = Mn、Fe、Co和Ni)来了解其氧化还原性质。使用X射线晶体学、X射线吸收光谱、循环伏安法和密度泛函理论计算相结合的方法,对还原态(M)和单电子氧化态(M)物种进行了仔细表征。观察到的金属-配体相互作用和电化学性质在元素周期表中并不总是遵循一致的趋势。我们证明,仅考虑轨道和几何弛豫无法解释这一观察结果,并且需要将自旋多重度变化纳入DFT计算中,以重现和理解这些趋势。此外,还分析了与金属配位的第六个配体的交换反应。最后,通过纳入已广泛表征的Py5OMe(吡啶-2,6-二基双[二-(吡啶-2-基)甲氧基甲烷])配合物的已发表数据,提取了不太常见的Py5OH配体的特殊特征。这种比较突出了远端OH官能团化对几何结构以及因此对金属配合物电子结构的非无辜效应。总之,这对这些贱金属配合物的金属和配体自由度进行了全面分析,同时也为如何控制过渡金属配合物的电化学过程提供了一般性见解。