School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
J Chem Inf Model. 2020 Dec 28;60(12):5832-5852. doi: 10.1021/acs.jcim.0c01010. Epub 2020 Dec 16.
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.
我们提出了一个使用增强采样分子动力学 (MD) 和整体对接进行计算机药物发现的超级计算机驱动管道。整体对接利用 MD 结果将化合物数据库对接入代表性的蛋白质结合部位构象,从而考虑到结合部位的动态特性。我们还描述了针对涉及 SARS-CoV-2 蛋白质组中 8 种蛋白质的 24 个系统获得的初步结果。MD 涉及温度复制交换增强采样,利用大规模并行超级计算快速采样蛋白质药物靶标的构象空间。使用橡树岭国家实验室的 Summit 超级计算机,每天可以生成超过 1 毫秒的增强采样 MD。我们使用 AutoDock Vina 将再利用数据库整体对接至 24 个 SARS-CoV-2 系统中的每 10 个配置。与实验的比较表明,我们的整体方法识别的化合物的得分最高的部分具有非常高的命中率。我们还证明,使用 Summit 上的 Autodock-GPU,可以在不到 24 小时内对十亿个化合物进行详尽的对接。最后,我们讨论了管道的初步结果和计划改进,包括使用量子力学 (QM)、机器学习和人工智能 (AI) 方法对 MD 轨迹进行聚类和重新对接构象。