Suppr超能文献

基于超级计算机的集成对接药物发现管道及其在新冠病毒中的应用。

Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19.

机构信息

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

出版信息

J Chem Inf Model. 2020 Dec 28;60(12):5832-5852. doi: 10.1021/acs.jcim.0c01010. Epub 2020 Dec 16.

Abstract

We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.

摘要

我们提出了一个使用增强采样分子动力学 (MD) 和整体对接进行计算机药物发现的超级计算机驱动管道。整体对接利用 MD 结果将化合物数据库对接入代表性的蛋白质结合部位构象,从而考虑到结合部位的动态特性。我们还描述了针对涉及 SARS-CoV-2 蛋白质组中 8 种蛋白质的 24 个系统获得的初步结果。MD 涉及温度复制交换增强采样,利用大规模并行超级计算快速采样蛋白质药物靶标的构象空间。使用橡树岭国家实验室的 Summit 超级计算机,每天可以生成超过 1 毫秒的增强采样 MD。我们使用 AutoDock Vina 将再利用数据库整体对接至 24 个 SARS-CoV-2 系统中的每 10 个配置。与实验的比较表明,我们的整体方法识别的化合物的得分最高的部分具有非常高的命中率。我们还证明,使用 Summit 上的 Autodock-GPU,可以在不到 24 小时内对十亿个化合物进行详尽的对接。最后,我们讨论了管道的初步结果和计划改进,包括使用量子力学 (QM)、机器学习和人工智能 (AI) 方法对 MD 轨迹进行聚类和重新对接构象。

相似文献

引用本文的文献

本文引用的文献

2
Supercomputing Pipelines Search for Therapeutics Against COVID-19.超级计算管道寻找抗 COVID-19 的疗法。
Comput Sci Eng. 2020 Nov 6;23(1):7-16. doi: 10.1109/MCSE.2020.3036540. eCollection 2021 Jan.
4
Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.
5
Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein.SARS-CoV-2 核衣壳磷酸蛋白识别 RNA 的结构基础。
PLoS Pathog. 2020 Dec 2;16(12):e1009100. doi: 10.1371/journal.ppat.1009100. eCollection 2020 Dec.
6
Therapy for Early COVID-19: A Critical Need.早期新冠病毒病的治疗:迫切需求。
JAMA. 2020 Dec 1;324(21):2149-2150. doi: 10.1001/jama.2020.22813.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验