Suppr超能文献

使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。

Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.

机构信息

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States.

Embedded Systems and Applications Group, Technical University of Darmstadt, Darmstadt D-64289, Germany.

出版信息

J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.

Abstract

AutoDock4 is a widely used program for docking small molecules to macromolecular targets. It describes ligand-receptor interactions using a physics-inspired scoring function that has been proven useful in a variety of drug discovery projects. However, compared to more modern and recent software, AutoDock4 has longer execution times, limiting its applicability to large scale dockings. To address this problem, we describe an OpenCL implementation of AutoDock4, called AutoDock-GPU, that leverages the highly parallel architecture of GPU hardware to reduce docking runtime by up to 350-fold with respect to a single-threaded process. Moreover, we introduce the gradient-based local search method ADADELTA, as well as an improved version of the Solis-Wets random optimizer from AutoDock4. These efficient local search algorithms significantly reduce the number of calls to the scoring function that are needed to produce good results. The improvements reported here, both in terms of docking throughput and search efficiency, facilitate the use of the AutoDock4 scoring function in large scale virtual screening.

摘要

AutoDock4 是一款广泛用于小分子对接大分子靶标的程序。它使用基于物理启发的评分函数描述配体-受体相互作用,该评分函数已在各种药物发现项目中得到证明是有用的。然而,与更现代和最近的软件相比,AutoDock4 的执行时间更长,限制了其在大规模对接中的应用。为了解决这个问题,我们描述了一种称为 AutoDock-GPU 的 AutoDock4 的 OpenCL 实现,它利用 GPU 硬件的高度并行架构,将对接运行时间相对于单线程进程缩短了 350 倍。此外,我们引入了基于梯度的局部搜索方法 ADADELTA,以及 AutoDock4 中 Solis-Wets 随机优化器的改进版本。这些高效的局部搜索算法显著减少了产生良好结果所需的评分函数调用次数。报告的这些改进,无论是在对接吞吐量还是搜索效率方面,都有助于在大规模虚拟筛选中使用 AutoDock4 评分函数。

相似文献

1
Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.
2
Accelerating AutoDock Vina with GPUs.使用 GPU 加速 AutoDock Vina。
Molecules. 2022 May 9;27(9):3041. doi: 10.3390/molecules27093041.

引用本文的文献

3
Structure-based rational design of covalent probes.基于结构的共价探针合理设计。
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.

本文引用的文献

5
Ultra-large library docking for discovering new chemotypes.超大库对接发现新化学型。
Nature. 2019 Feb;566(7743):224-229. doi: 10.1038/s41586-019-0917-9. Epub 2019 Feb 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验