Yang Qihong, Wan Xiaoshuai, Wang Jiaying, Zhang Yuyang, Zhang Junhong, Wang Taotao, Yang Changxian, Ye Zhibiao
Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
Hortic Res. 2020 Nov 1;7(1):180. doi: 10.1038/s41438-020-00402-0.
Helical growth is an economical way for plant to obtain resources. The classic microtubule-microfibril alignment model of Arabidopsis helical growth involves restriction of the appropriate orientation of cellulose microfibrils appropriately in the cell walls. However, the molecular mechanism underlying tomato helical growth remains unknown. Here, we identified a spontaneous tomato helical (hel) mutant with right-handed helical cotyledons and petals but left-handed helical stems and true leaves. Genetic analysis revealed that the hel phenotype was controlled by a single recessive gene. Using map-based cloning, we cloned the HEL gene, which encodes a cellulose interacting protein homologous to CSI1 of Arabidopsis. We identified a 27 bp fragment replacement that generated a premature stop codon. Transgenic experiments showed that the helical growth phenotype could be restored by the allele of this gene from wild-type Pyriforme. In contrast, the knockout mutation of HEL in Pyriforme via CRISPR/Cas9 resulted in helical growth. These findings shed light on the molecular control of the helical growth of tomato.
螺旋生长是植物获取资源的一种经济方式。拟南芥螺旋生长的经典微管-微纤丝排列模型涉及在细胞壁中适当限制纤维素微纤丝的合适取向。然而,番茄螺旋生长的分子机制仍然未知。在这里,我们鉴定出一个自发的番茄螺旋(hel)突变体,其子叶和花瓣呈右旋螺旋状,但茎和真叶呈左旋螺旋状。遗传分析表明,hel表型由单个隐性基因控制。通过图位克隆,我们克隆了HEL基因,该基因编码一种与拟南芥CSI1同源的纤维素相互作用蛋白。我们鉴定出一个27bp的片段替换,产生了一个提前终止密码子。转基因实验表明,来自野生型梨形番茄的该基因等位基因可以恢复螺旋生长表型。相反,通过CRISPR/Cas9对梨形番茄中的HEL进行敲除突变导致了螺旋生长。这些发现揭示了番茄螺旋生长的分子调控机制。