Suppr超能文献

通过时间深度学习方法检测电子健康记录中编码错误的糖尿病诊断代码以提高质量

Detecting Miscoded Diabetes Diagnosis Codes in Electronic Health Records for Quality Improvement: Temporal Deep Learning Approach.

作者信息

Rashidian Sina, Abell-Hart Kayley, Hajagos Janos, Moffitt Richard, Lingam Veena, Garcia Victor, Tsai Chao-Wei, Wang Fusheng, Dong Xinyu, Sun Siao, Deng Jianyuan, Gupta Rajarsi, Miller Joshua, Saltz Joel, Saltz Mary

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, NY, United States.

Department of Biomedical Informatics, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, United States.

出版信息

JMIR Med Inform. 2020 Dec 17;8(12):e22649. doi: 10.2196/22649.

Abstract

BACKGROUND

Diabetes affects more than 30 million patients across the United States. With such a large disease burden, even a small error in classification can be significant. Currently billing codes, assigned at the time of a medical encounter, are the "gold standard" reflecting the actual diseases present in an individual, and thus in aggregate reflect disease prevalence in the population. These codes are generated by highly trained coders and by health care providers but are not always accurate.

OBJECTIVE

This work provides a scalable deep learning methodology to more accurately classify individuals with diabetes across multiple health care systems.

METHODS

We leveraged a long short-term memory-dense neural network (LSTM-DNN) model to identify patients with or without diabetes using data from 5 acute care facilities with 187,187 patients and 275,407 encounters, incorporating data elements including laboratory test results, diagnostic/procedure codes, medications, demographic data, and admission information. Furthermore, a blinded physician panel reviewed discordant cases, providing an estimate of the total impact on the population.

RESULTS

When predicting the documented diagnosis of diabetes, our model achieved an 84% F1 score, 96% area under the curve-receiver operating characteristic curve, and 91% average precision on a heterogeneous data set from 5 distinct health facilities. However, in 81% of cases where the model disagreed with the documented phenotype, a blinded physician panel agreed with the model. Taken together, this suggests that 4.3% of our studied population have either missing or improper diabetes diagnosis.

CONCLUSIONS

This study demonstrates that deep learning methods can improve clinical phenotyping even when patient data are noisy, sparse, and heterogeneous.

摘要

背景

糖尿病影响着美国超过3000万患者。面对如此巨大的疾病负担,即使分类上的一个小错误也可能意义重大。目前,在医疗就诊时分配的计费代码是反映个体实际存在疾病的“黄金标准”,因此总体上反映了人群中的疾病患病率。这些代码由训练有素的编码员和医疗保健提供者生成,但并不总是准确的。

目的

这项工作提供了一种可扩展的深度学习方法,以更准确地对多个医疗保健系统中的糖尿病患者进行分类。

方法

我们利用长短期记忆密集神经网络(LSTM-DNN)模型,使用来自5家急性护理机构的187187名患者和275407次就诊数据,包括实验室检查结果、诊断/程序代码、药物、人口统计学数据和入院信息等数据元素,来识别患有或未患有糖尿病的患者。此外,一个盲法医生小组对不一致的病例进行了审查,以估计对总体人群的总体影响。

结果

在预测记录的糖尿病诊断时,我们的模型在来自5个不同医疗机构的异构数据集上实现了84%的F1分数、96%的曲线下面积-受试者操作特征曲线以及91%的平均精度。然而,在81%的模型与记录的表型不一致的病例中,一个盲法医生小组同意模型的判断。综合来看,这表明我们研究的人群中有4.3%存在糖尿病诊断缺失或不正确的情况。

结论

这项研究表明,即使患者数据存在噪声、稀疏且异构,深度学习方法也可以改善临床表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f9/7775195/c76812ca4b93/medinform_v8i12e22649_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验