Suppr超能文献

由稻壳合成的多孔硅上纳米珊瑚结构的大场增强。

Large Field Enhancement of Nanocoral Structures on Porous Si Synthesized from Rice Husks.

机构信息

Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.

Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1105-1113. doi: 10.1021/acsami.0c14248. Epub 2020 Dec 17.

Abstract

Silicon (Si) is a highly abundant, environmentally benign, and durable material and is the most popular semiconductor material; and it is used for the field enhancement of dielectric materials. Porous Si (PSi) exhibits high functionality due to its specific structure. However, the field enhancement of PSi has not been clarified sufficiently. Herein, we present the field enhancement of PSi by the fluorescence intensity enhancement of a dye molecule. The raw material used for producing PSi was rice husk, a biomass material. A nanocoral structure, consisting of spheroidal structures on the surface of PSi, was observed when PSi was subjected to chemical processes and pulsed laser melting, and it demonstrated large field enhancement with an enhancement factor (EF) of up to 545. Confocal microscopy was used for EF mapping of samples before and after laser melting, and the maps were superimposed on nanoscale scanning electron microscope images to highlight the EF effect as a function of microstructure. Nanocoral Si with high EF values were also evaluated by analyzing the porosity from gas adsorption measurements. Nanocoral Si was responsible for the high EF, according to thermodynamic calculations and agreement between experimental and calculation results as determined by Mie scattering theory.

摘要

硅(Si)是一种丰富、环境友好且耐用的材料,是最受欢迎的半导体材料;它被用于增强介电材料的场。多孔硅(PSi)由于其特殊的结构而表现出高功能。然而,PSi 的场增强尚未得到充分阐明。在此,我们通过染料分子的荧光强度增强来展示 PSi 的场增强。用于生产 PSi 的原材料是稻壳,一种生物质材料。当 PSi 经过化学处理和脉冲激光熔化时,观察到由 PSi 表面上的球形结构组成的纳米珊瑚结构,并且其表现出高达 545 的大场增强,增强因子(EF)。在激光熔化前后使用共焦显微镜对样品进行 EF 映射,并将地图叠加在纳米级扫描电子显微镜图像上,以突出作为微结构函数的 EF 效应。通过气体吸附测量分析多孔率,还评估了具有高 EF 值的纳米珊瑚硅。根据热力学计算和 Mie 散射理论确定的实验和计算结果之间的一致性,纳米珊瑚硅是 EF 高的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验