Liu Yun, Tian Yunfeng, Wang Wenjie, Li Yitong, Chattopadhyay Shreyasi, Chi Bo, Pu Jian
China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China.
Center for Fuel Cell Innovation, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
ACS Appl Mater Interfaces. 2020 Dec 30;12(52):57941-57949. doi: 10.1021/acsami.0c18583. Epub 2020 Dec 17.
Weak electrocatalytic activity of the LaSrMnO (LSM) oxygen electrode at medium and low temperatures leads to decreasing performance both in the solid oxide fuel cell (SOFC) mode and the solid oxide electrolysis cell (SOEC) mode. Herein, we design an ErBiO (ESB) functionalized LaSrMnO (labeled as LSM/ESB) oxygen electrode via a one-step co-synthesis modified Pechini method. The unique LSM/ESB with polarization resistance of only 0.029 Ω·cm at 750 °C enables a highly enhanced rate of oxygen reduction and evolution reaction. The single cell with the LSM/ESB electrode achieves a maximum power density of 1.747 W cm at 750 °C, 2.6 times higher than that of the mechanically mixed LSM-ESB electrode (0.667 W cm). In the SOEC mode, it also shows the improved performance of the LSM/ESB electrode. Furthermore, the cell exhibits admirable durability of 90 h in the fuel cell mode and excellent reversibility. The better performance can be concluded as a better surface-active state and a tighter connection between the LSM and ESB particles of LSM/ESB via a co-synthesis process. This work proposes a novel strategy to advance the application of the one-step modified Pechini technology for an efficient and stable oxygen electrode.
镧锶锰氧化物(LSM)氧电极在中低温下的弱电催化活性导致其在固体氧化物燃料电池(SOFC)模式和固体氧化物电解池(SOEC)模式下的性能均下降。在此,我们通过一步共合成改性的佩琴尼方法设计了一种铒铋氧化物(ESB)功能化的镧锶锰氧化物(标记为LSM/ESB)氧电极。独特的LSM/ESB在750℃时极化电阻仅为0.029Ω·cm,能够显著提高氧还原和析氧反应速率。具有LSM/ESB电极的单电池在750℃时实现了1.747W/cm²的最大功率密度,比机械混合的LSM-ESB电极(0.667W/cm²)高2.6倍。在SOEC模式下,它也显示出LSM/ESB电极性能的提升。此外,该电池在燃料电池模式下表现出令人钦佩的90小时耐久性和出色的可逆性。更好的性能可归因于通过共合成过程获得的更好的表面活性状态以及LSM/ESB的LSM和ESB颗粒之间更紧密的连接。这项工作提出了一种新颖的策略,以推进一步改性佩琴尼技术在高效稳定氧电极方面的应用。