Suppr超能文献

一种针对大旋转头部姿态的新型眼部中心定位方法。

A Novel Eye Center Localization Method for Head Poses With Large Rotations.

作者信息

Hsu Wei-Yen, Chung Chi-Jui

出版信息

IEEE Trans Image Process. 2021;30:1369-1381. doi: 10.1109/TIP.2020.3044209. Epub 2020 Dec 23.

Abstract

Eye localization is undoubtedly crucial to acquiring large amounts of information. It not only helps people improve their understanding of others but is also a technology that enables machines to better understand humans. Although studies have reported satisfactory accuracy for frontal faces or head poses at limited angles, large head rotations generate numerous defects (e.g., disappearance of the eye), and existing methods are not effective enough to accurately localize eye centers. Therefore, this study makes three contributions to address these limitations. First, we propose a novel complete representation (CR) pipeline that can flexibly learn and generate two complete representations, namely the CR-center and CR-region, of the same identity. We also propose two novel eye center localization methods. This first method employs geometric transformation to estimate the rotational difference between two faces and an unknown-localization strategy for accurate transformation of the CR-center. The second method is based on image translation learning and uses the CR-region to train the generative adversarial network, which can then accurately generate and localize eye centers. Five image databases are employed to verify the proposed methods, and tests reveal that compared with existing methods, the proposed method can more accurately and robustly localize eye centers in challenging images, such as those showing considerable head rotation (both yaw rotation of -67.5° to +67.5° and roll rotation of +120° to -120°), complete occlusion of both eyes, poor illumination in addition to head rotation, head pose changes in the dark, and various gaze interaction.

摘要

眼睛定位对于获取大量信息无疑至关重要。它不仅有助于人们增进对他人的理解,也是一项能让机器更好地理解人类的技术。尽管已有研究报告称在有限角度下正面人脸或头部姿势的准确率令人满意,但大幅度的头部旋转会产生许多缺陷(例如眼睛消失),并且现有方法在准确确定眼睛中心位置方面效果不够理想。因此,本研究为解决这些局限性做出了三点贡献。首先,我们提出了一种新颖的完整表示(CR)管道,它可以灵活地学习并生成同一身份的两种完整表示,即CR中心和CR区域。我们还提出了两种新颖的眼睛中心定位方法。第一种方法采用几何变换来估计两张脸之间的旋转差异,并采用一种未知定位策略来精确转换CR中心。第二种方法基于图像平移学习,并使用CR区域来训练生成对抗网络,该网络随后可以准确地生成并定位眼睛中心。我们使用了五个图像数据库来验证所提出的方法,测试结果表明,与现有方法相比,所提出的方法能够在具有挑战性的图像中更准确、更稳健地定位眼睛中心,这些具有挑战性的图像包括那些头部有大幅旋转(偏航旋转范围为-67.5°至+67.5°,翻滚旋转范围为+120°至-120°)、双眼完全遮挡、除头部旋转外光照不佳、黑暗中头部姿势变化以及各种注视交互的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验