Suppr超能文献

近距离观察场景:用于遥感图像场景分类的多尺度表示学习

Looking Closer at the Scene: Multiscale Representation Learning for Remote Sensing Image Scene Classification.

作者信息

Wang Qi, Huang Wei, Xiong Zhitong, Li Xuelong

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1414-1428. doi: 10.1109/TNNLS.2020.3042276. Epub 2022 Apr 4.

Abstract

Remote sensing image scene classification has attracted great attention because of its wide applications. Although convolutional neural network (CNN)-based methods for scene classification have achieved excellent results, the large-scale variation of the features and objects in remote sensing images limits the further improvement of the classification performance. To address this issue, we present multiscale representation for scene classification, which is realized by a global-local two-stream architecture. This architecture has two branches of the global stream and local stream, which can individually extract the global features and local features from the whole image and the most important area. In order to locate the most important area in the whole image using only image-level labels, a weakly supervised key area detection strategy of structured key area localization (SKAL) is specially designed to connect the above two streams. To verify the effectiveness of the proposed SKAL-based two-stream architecture, we conduct comparative experiments based on three widely used CNN models, including AlexNet, GoogleNet, and ResNet18, on four public remote sensing image scene classification data sets, and achieve the state-of-the-art results on all the four data sets. Our codes are provided in https://github.com/hw2hwei/SKAL.

摘要

遥感图像场景分类因其广泛的应用而备受关注。尽管基于卷积神经网络(CNN)的场景分类方法取得了优异的成果,但遥感图像中特征和物体的大规模变化限制了分类性能的进一步提高。为了解决这个问题,我们提出了用于场景分类的多尺度表示,它由全局-局部双流架构实现。该架构有全局流和局部流两个分支,它们可以分别从整个图像和最重要区域提取全局特征和局部特征。为了仅使用图像级标签来定位整个图像中最重要的区域,专门设计了一种结构化关键区域定位(SKAL)的弱监督关键区域检测策略来连接上述两个流。为了验证所提出的基于SKAL的双流架构的有效性,我们在四个公共遥感图像场景分类数据集上,基于三种广泛使用的CNN模型(包括AlexNet、GoogleNet和ResNet18)进行了对比实验,并在所有四个数据集上取得了当前最优的结果。我们的代码可在https://github.com/hw2hwei/SKAL获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验