Suppr超能文献

一种用于遥感图像场景分类的高效轻量级卷积神经网络。

An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification.

机构信息

Institute of Geospatial Information, Information Engineering University, Zheng Zhou 450001, China.

出版信息

Sensors (Basel). 2020 Apr 2;20(7):1999. doi: 10.3390/s20071999.

Abstract

Classifying remote sensing images is vital for interpreting image content. Presently, remote sensing image scene classification methods using convolutional neural networks have drawbacks, including excessive parameters and heavy calculation costs. More efficient and lightweight CNNs have fewer parameters and calculations, but their classification performance is generally weaker. We propose a more efficient and lightweight convolutional neural network method to improve classification accuracy with a small training dataset. Inspired by fine-grained visual recognition, this study introduces a bilinear convolutional neural network model for scene classification. First, the lightweight convolutional neural network, MobileNetv2, is used to extract deep and abstract image features. Each feature is then transformed into two features with two different convolutional layers. The transformed features are subjected to Hadamard product operation to obtain an enhanced bilinear feature. Finally, the bilinear feature after pooling and normalization is used for classification. Experiments are performed on three widely used datasets: UC Merced, AID, and NWPU-RESISC45. Compared with other state-of-art methods, the proposed method has fewer parameters and calculations, while achieving higher accuracy. By including feature fusion with bilinear pooling, performance and accuracy for remote scene classification can greatly improve. This could be applied to any remote sensing image classification task.

摘要

遥感图像分类对于解释图像内容至关重要。目前,基于卷积神经网络的遥感图像场景分类方法存在参数过多、计算成本高的缺点。更高效、更轻量级的 CNN 具有更少的参数和计算量,但它们的分类性能通常较弱。我们提出了一种更高效、更轻量级的卷积神经网络方法,以在小训练数据集上提高分类准确性。受细粒度视觉识别的启发,本研究提出了一种用于场景分类的双线性卷积神经网络模型。首先,使用轻量化卷积神经网络 MobileNetv2 提取深度和抽象的图像特征。然后,将每个特征转换为两个具有两个不同卷积层的特征。将转换后的特征进行 Hadamard 积运算,得到增强的双线性特征。最后,对池化和归一化后的双线性特征进行分类。在三个广泛使用的数据集 UC Merced、AID 和 NWPU-RESISC45 上进行了实验。与其他最先进的方法相比,所提出的方法具有更少的参数和计算量,同时实现了更高的准确性。通过与双线性池化的特征融合,可以极大地提高遥感场景分类的性能和准确性。这可以应用于任何遥感图像分类任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d56/7181261/170dfbeeba65/sensors-20-01999-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验