Suppr超能文献

人工智能预测颈痛综合征康复效果。

Artificial intelligence prediction of the effect of rehabilitation in whiplash associated disorder.

机构信息

Biomechanics department, Fisi(ON) Health Group, RetiaTech, Las Rozas, Spain.

San Juan de Dios School of Nursing and Physical Therapy, Comillas Pontifical University, Madrid, Spain.

出版信息

PLoS One. 2020 Dec 17;15(12):e0243816. doi: 10.1371/journal.pone.0243816. eCollection 2020.

Abstract

The active cervical range of motion (aROM) is assessed by clinicians to inform their decision-making. Even with the ability of neck motion to discriminate injured from non-injured subjects, the mechanisms to explain recovery or persistence of WAD remain unclear. There are few studies of ROM examinations with precision tools using kinematics as predictive factors of recovery rate. The present paper will evaluate the performance of an artificial neural network (ANN) using kinematic variables to predict the overall change of aROM after a period of rehabilitation in WAD patients. To achieve this goal the neck kinematics of a cohort of 1082 WAD patients (55.1% females), with mean age 37.68 (SD 12.88) years old, from across Spain were used. Prediction variables were the kinematics recorded by the EBI® 5 in routine biomechanical assessments of these patients. These include normalized ROM, speed to peak and ROM coefficient of variation. The improvement of aROM was represented by the Neck Functional Holistic Analysis Score (NFHAS). A supervised multi-layer feed-forward ANN was created to predict the change in NFHAS. The selected architecture of the ANN showed a mean squared error of 308.07-272.75 confidence interval for a 95% in the Monte Carlo cross validation. The performance of the ANN was tested with a subsample of patients not used in the training. This comparison resulted in a medium correlation with R = 0.5. The trained neural network to predict the expected difference in NFHAS between baseline and follow up showed modest results. While the overall performance is moderately correlated, the error of this prediction is still too large to use the method in clinical practice. The addition of other clinically relevant factors could further improve prediction performance.

摘要

主动颈椎活动度(aROM)由临床医生评估,以辅助决策。即使颈部运动有能力区分受伤和未受伤的受试者,但解释 WAD 恢复或持续的机制仍不清楚。使用运动学作为恢复率的预测因素,对 ROM 检查进行了很少的研究。本文将使用运动学变量评估人工神经网络(ANN)的性能,以预测 WAD 患者康复后 aROM 的整体变化。为了实现这一目标,使用了来自西班牙各地的 1082 名 WAD 患者(55.1%女性)的颈部运动学数据,平均年龄为 37.68 岁(SD 12.88 岁)。预测变量是通过 EBI®5 在这些患者的常规生物力学评估中记录的运动学。这些包括归一化 ROM、峰值速度和 ROM 变异系数。aROM 的改善由颈部功能整体分析评分(NFHAS)表示。创建了一个监督多层前馈 ANN 来预测 NFHAS 的变化。ANN 的选择结构在蒙特卡罗交叉验证的 95%置信区间内显示出 308.07-272.75 的平均平方误差。使用未用于训练的患者子样本测试 ANN 的性能。这一比较产生了中等相关度 R = 0.5。训练神经网络预测 NFHAS 在基线和随访之间的预期差异的结果并不理想。虽然整体性能具有中等相关性,但这种预测的误差仍然太大,无法在临床实践中使用该方法。添加其他临床相关因素可能会进一步提高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d4/7746175/c094179519fd/pone.0243816.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验