Suppr超能文献

宽带二维稀疏阵优化与多线接收相结合的实时三维医学超声。

Wideband 2-D sparse array optimization combined with multiline reception for real-time 3-D medical ultrasound.

机构信息

Dept. of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture (DITEN), University of Genoa, Via all'Opera Pia 11, Genova 16145, Italy.

出版信息

Ultrasonics. 2021 Mar;111:106318. doi: 10.1016/j.ultras.2020.106318. Epub 2020 Dec 1.

Abstract

Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire 3-D images may result in a transducer composed of thousands of elements and a large amount of data in the front-end, making it impractical to implement high volume rate imaging and individually control all elements with the scanner. This paper proposes an original approach, valid for wideband operations centered on the design center frequency, to maintain a limited number of active elements and firing events, while preserving high resolution and volume rate. A 7 MHz 2-D array is composed of two circular concentric subparts. In the inner footprint the elements are distributed following a regular grid, while in the outer subpart a sparse non-grid solution is adopted. The inner circular dense array is composed of 256 elements with a pitch of 0.5λ. The overall footprint, delimited by the outer subpart, is equivalent to a 256-element array with a pitch of 1.5λ. All the elements of the inner subpart are activated in transmission. Following an optimization procedure, both subparts, including a subset of the elements placed in the inner footprint (i.e., sparse on-the-grid array) and the elements spread over the outer subpart (i.e., sparse off-the-grid array) are used to receive. A total number of 256 elements, defined by the sum of elements distributed in the inner and outer subparts, is fixed in reception. The proposed approach implies a multiline reception strategy, where for each transmission 3 × 3 firing events occur in reception. The sparse receive array is optimized by using a simulated annealing optimization. An original cost function is designed specifically to achieve successful results in wideband conditions. The receive array is optimized in order to obtain consistent results for different signal bandwidths of the excitation pulse. For all the desired bandwidths, the optimized array will provide the recovery of the lower lateral resolution of the transmission phase and, at the same time, a significant reduction of the undesired side lobe raised in the 3-D two-way beam pattern. The 3-D two-way beam pattern analysis reveals that the proposed solution is able to guarantee a lateral resolution of 1.35 mm at a focus depth of 25 mm for the three fractional signal bandwidths of interest (i.e., 30%, 50% and 70%) considered in the optimization process. The undesired side lobes are successfully suppressed especially when, as a consequence of the multiline strategy, non-coincident steering angles are used in transmission and reception. Moreover, thanks to the firing scheme adopted, a high-volume rate of 63 volumes per second may be achieved at the focus depth. The volume rate decreases to 32 volumes per second at twice the focal depth. Phantom image simulations show that the proposed method maintains a satisfactory and almost uniform image quality in terms of resolution and contrast for all the signal bandwidths of interest.

摘要

三维(3-D)超声医学成像相对于传统的 2-D 可视化方法具有优势。然而,使用 2-D 阵列来获取 3-D 图像可能会导致换能器由数千个元件组成,并且在前端会有大量的数据,使得实现高体积率成像和单独控制所有元件变得不切实际。本文提出了一种原始方法,该方法可用于以设计中心频率为中心的宽带操作,以保持有限数量的活动元件和发射事件,同时保持高分辨率和体积率。一个 7 MHz 的 2-D 阵列由两个同心的圆形子部分组成。在内部足迹中,元件沿规则网格分布,而在外部子部分中采用稀疏非网格解决方案。内部圆形密集阵列由 256 个具有 0.5λ 节距的元件组成。由外部子部分限定的整体足迹相当于具有 1.5λ 节距的 256 元件阵列。在发射中,内子部分的所有元件都被激活。经过优化程序,包括放置在内足迹中的元素子集(即,稀疏网格上的阵列)和分布在外部子部分上的元素(即,稀疏网格外的阵列)在内的两个子部分都用于接收。接收时,固定接收的总元件数为内子部分和外子部分中分布的元件数之和。所提出的方法意味着采用多线接收策略,其中每次发射有 3×3 个发射事件发生在接收中。稀疏接收阵列通过使用模拟退火优化进行优化。设计了一个原始的成本函数,专门用于在宽带条件下获得成功的结果。为了获得不同激励脉冲信号带宽的一致结果,对接收阵列进行了优化。对于所有期望的带宽,优化后的阵列将提供传输相位较低横向分辨率的恢复,同时在三维双向波束模式中显著降低不希望的旁瓣。三维双向波束模式分析表明,所提出的解决方案能够保证在优化过程中考虑的三个分数信号带宽(即 30%、50%和 70%)的聚焦深度为 25mm 时,具有 1.35mm 的横向分辨率。当由于多线策略而在发射和接收中使用非重合转向角时,成功地抑制了不需要的旁瓣。此外,由于采用了点火方案,在焦点深度处可实现 63 个/秒的高体积率。当两倍的焦距深度时,体积率降低到 32 个/秒。幻影图像模拟表明,对于所有感兴趣的信号带宽,所提出的方法在分辨率和对比度方面保持令人满意且几乎均匀的图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验