Suppr超能文献

基于二分图的微泡配对和基于卡尔曼滤波跟踪的三维超声定位显微镜,在具有32×32矩阵阵列的256通道Verasonics超声系统上的应用

Three-Dimensional Ultrasound Localization Microscopy with Bipartite Graph-Based Microbubble Pairing and Kalman-Filtering-Based Tracking on a 256-Channel Verasonics Ultrasound System with a 32 × 32 Matrix Array.

作者信息

Lok U-Wai, Huang Chengwu, Trzasko Joshua D, Kim Yohan, Lucien Fabrice, Tang Shanshan, Gong Ping, Song Pengfei, Chen Shigao

机构信息

Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN.

Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN.

出版信息

J Med Biol Eng. 2022 Dec;42(6):767-779. doi: 10.1007/s40846-022-00755-y. Epub 2022 Oct 28.

Abstract

Three-dimensional (3D) ultrasound localization microscopy (ULM) using a 2-D matrix probe and microbubbles (MBs) has been recently proposed to visualize microvasculature beyond the ultrasound diffraction limit in three spatial dimensions. However, 3D ULM suffers from several limitations: (1) high system complexity due to numerous channel counts, (2) complex MB flow dynamics in 3D, and (3) extremely long acquisition time. To reduce the system complexity while maintaining high image quality, we used a sub-aperture process to reduce received channel counts. To address the second issue, a 3D bipartite graph-based method with Kalman filtering-based tracking was used in this study for MB tracking. An MB separation approach was incorporated to separate high concentration MB data into multiple, sparser MB datasets, allowing better MB localization and tracking for a limited acquisition time. The proposed method was first validated in a flow channel phantom, showing improved spatial resolutions compared with the contrasted enhanced power Doppler image. Then the proposed method was evaluated with an chicken embryo brain dataset. Results showed that the reconstructed 3D super-resolution image achieved a spatial resolution of around 52 μm (smaller than the wavelength of around 200 μm). Microvessels that cannot be resolved clearly using localization only, can be well identified with the tailored 3D pairing and tracking algorithms. To sum up, the feasibility of the 3D ULM is shown, indicating the great possibility in clinical applications.

摘要

最近有人提出使用二维矩阵探头和微泡(MBs)的三维(3D)超声定位显微镜(ULM),以在三个空间维度上可视化超出超声衍射极限的微血管。然而,3D ULM存在几个局限性:(1)由于通道数量众多,系统复杂度高;(2)3D中复杂的MB流动动力学;(3)采集时间极长。为了在保持高图像质量的同时降低系统复杂度,我们使用子孔径处理来减少接收通道数量。为了解决第二个问题,本研究采用了基于三维二分图和基于卡尔曼滤波的跟踪方法来跟踪MB。采用MB分离方法将高浓度MB数据分离为多个更稀疏的MB数据集,以便在有限的采集时间内更好地进行MB定位和跟踪。所提出的方法首先在流动通道模型中得到验证,与对比增强功率多普勒图像相比,显示出更高的空间分辨率。然后,使用鸡胚脑数据集对所提出的方法进行评估。结果表明,重建的3D超分辨率图像实现了约52μm的空间分辨率(小于约200μm的波长)。仅使用定位无法清晰分辨的微血管,可以通过定制的3D配对和跟踪算法很好地识别。总之,展示了3D ULM的可行性,表明其在临床应用中具有很大的可能性。

相似文献

5
Improved Ultrasound Localization Microscopy Based on Microbubble Uncoupling via Transmit Excitation.基于微泡解耦的超声定位显微镜的改进:通过发射激励。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Mar;69(3):1041-1052. doi: 10.1109/TUFFC.2022.3143864. Epub 2022 Mar 2.
8
Ultrasound localization microscopy.超声定位显微镜。
Z Med Phys. 2023 Aug;33(3):292-308. doi: 10.1016/j.zemedi.2023.02.004. Epub 2023 Jun 15.
9
Ultrafast 3D Ultrasound Localization Microscopy Using a 32 × 32 Matrix Array.使用 32×32 矩阵阵元的超快 3D 超声定位显微镜。
IEEE Trans Med Imaging. 2019 Sep;38(9):2005-2015. doi: 10.1109/TMI.2018.2890358. Epub 2019 Apr 1.

引用本文的文献

本文引用的文献

3
Deep Learning-Based Microbubble Localization for Ultrasound Localization Microscopy.基于深度学习的超声定位显微镜微泡定位。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1312-1325. doi: 10.1109/TUFFC.2022.3152225. Epub 2022 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验