Suppr超能文献

基于 IMU 生成的多元时间序列数据集的人工智能辅助疲劳和耐力控制在竞技运动中的应用。

AI-Assisted Fatigue and Stamina Control for Performance Sports on IMU-Generated Multivariate Times Series Datasets.

机构信息

Department of Physiotherapy, University of Malaga, 29071 Malaga, Spain.

Department of Electrical Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Str. Nicolae Iorga, Nr. 1, 540088 Targu Mures, Romania.

出版信息

Sensors (Basel). 2023 Dec 26;24(1):132. doi: 10.3390/s24010132.

Abstract

BACKGROUND

Optimal sports performance requires a balance between intensive training and adequate rest. IMUs provide objective, quantifiable data to analyze performance dynamics, despite the challenges in quantifying athlete training loads. The ability of AI to analyze complex datasets brings innovation to the monitoring and optimization of athlete training cycles. Traditional techniques rely on subjective assessments to prevent overtraining, which can lead to injury and underperformance. IMUs provide objective, quantitative data on athletes' physical status during action. AI and machine learning can turn these data into useful insights, enabling data-driven athlete performance management. With IMU-generated multivariate time series data, this paper uses AI to construct a robust model for predicting fatigue and stamina.

MATERIALS AND METHODS

IMUs linked to 19 athletes recorded triaxial acceleration, angular velocity, and magnetic orientation throughout repeated sessions. Standardized training included steady-pace runs and fatigue-inducing techniques. The raw time series data were used to train a supervised ML model based on frequency and time-domain characteristics. The performances of Random Forest, Gradient Boosting Machines, and LSTM networks were compared. A feedback loop adjusted the model in real time based on prediction error and bias estimation.

RESULTS

The AI model demonstrated high predictive accuracy for fatigue, showing significant correlations between predicted fatigue levels and observed declines in performance. Stamina predictions enabled individualized training adjustments that were in sync with athletes' physiological thresholds. Bias correction mechanisms proved effective in minimizing systematic prediction errors. Moreover, real-time adaptations of the model led to enhanced training periodization strategies, reducing the risk of overtraining and improving overall athletic performance.

CONCLUSIONS

In sports performance analytics, the AI-assisted model using IMU multivariate time series data is effective. Training can be tailored and constantly altered because the model accurately predicts fatigue and stamina. AI models can effectively forecast the beginning of weariness before any physical symptoms appear. This allows for timely interventions to prevent overtraining and potential accidents. The model shows an exceptional ability to customize training programs according to the physiological reactions of each athlete and enhance the overall training effectiveness. In addition, the study demonstrated the model's efficacy in real-time monitoring performance, improving the decision-making abilities of both coaches and athletes. The approach enables ongoing and thorough data analysis, supporting strategic planning for training and competition, resulting in optimized performance outcomes. These findings highlight the revolutionary capability of AI in sports science, offering a future where data-driven methods greatly enhance athlete training and performance management.

摘要

背景

最佳运动表现需要在密集训练和充分休息之间取得平衡。惯性测量单元(IMU)提供客观、可量化的数据,以分析运动表现动态,但在量化运动员训练负荷方面仍存在挑战。人工智能(AI)分析复杂数据集的能力为运动员训练周期的监测和优化带来了创新。传统技术依赖于主观评估来防止过度训练,这可能导致受伤和表现不佳。IMU 可提供运动员在运动过程中的身体状态的客观、定量数据。AI 和机器学习可以将这些数据转化为有用的见解,实现数据驱动的运动员表现管理。本文利用 IMU 生成的多元时间序列数据,采用 AI 构建了一个强健的模型,用于预测疲劳和耐力。

材料与方法

19 名运动员佩戴的 IMU 记录了他们在重复训练过程中的三轴加速度、角速度和磁方向。标准训练包括匀速跑和疲劳诱导技术。原始时间序列数据用于基于频率和时域特征训练监督机器学习模型。比较了随机森林、梯度提升机和长短期记忆(LSTM)网络的性能。反馈回路根据预测误差和偏差估计实时调整模型。

结果

AI 模型在预测疲劳方面表现出较高的准确性,预测疲劳水平与观察到的运动表现下降之间存在显著相关性。耐力预测使个性化训练调整成为可能,与运动员的生理阈值保持同步。偏差校正机制在最小化系统预测误差方面非常有效。此外,模型的实时调整导致了更优化的训练分期策略,降低了过度训练的风险,提高了整体运动表现。

结论

在运动表现分析中,基于 IMU 多元时间序列数据的 AI 辅助模型是有效的。由于模型可以准确预测疲劳和耐力,可以定制和不断改变训练。AI 模型可以在出现任何身体症状之前有效地预测疲劳的开始。这可以及时进行干预,防止过度训练和潜在事故。该模型还表现出根据每个运动员的生理反应定制训练计划的出色能力,从而增强整体训练效果。此外,该研究还证明了模型在实时监测表现方面的功效,提高了教练和运动员的决策能力。该方法实现了持续而全面的数据分析,支持训练和比赛的战略规划,从而优化了表现结果。这些发现突显了 AI 在运动科学中的革命性能力,为数据驱动的方法极大地增强运动员训练和表现管理提供了未来的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0158/10781393/0f54849a99c5/sensors-24-00132-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验