Suppr超能文献

基于暹罗架构的 3D 密集网络,采用中性表情的个性化归一化,用于自然微笑和摆拍微笑分类。

Siamese Architecture-Based 3D DenseNet with Person-Specific Normalization Using Neutral Expression for Spontaneous and Posed Smile Classification.

机构信息

Department of Computer Science, Graduate School, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul 03016, Korea.

Department of Human-Centered Artificial Intelligence, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul 03016, Korea.

出版信息

Sensors (Basel). 2020 Dec 15;20(24):7184. doi: 10.3390/s20247184.

Abstract

Clinical studies have demonstrated that spontaneous and posed smiles have spatiotemporal differences in facial muscle movements, such as laterally asymmetric movements, which use different facial muscles. In this study, a model was developed in which video classification of the two types of smile was performed using a 3D convolutional neural network (CNN) applying a Siamese network, and using a neutral expression as reference input. The proposed model makes the following contributions. First, the developed model solves the problem caused by the differences in appearance between individuals, because it learns the spatiotemporal differences between the neutral expression of an individual and spontaneous and posed smiles. Second, using a neutral expression as an anchor improves the model accuracy, when compared to that of the conventional method using genuine and imposter pairs. Third, by using a neutral expression as an anchor image, it is possible to develop a fully automated classification system for spontaneous and posed smiles. In addition, visualizations were designed for the Siamese architecture-based 3D CNN to analyze the accuracy improvement, and to compare the proposed and conventional methods through feature analysis, using principal component analysis (PCA).

摘要

临床研究表明,自发微笑和人为微笑在面部肌肉运动方面存在时空差异,例如侧向不对称运动,这些运动使用不同的面部肌肉。在这项研究中,开发了一种模型,该模型使用 3D 卷积神经网络 (CNN) 应用暹罗网络对两种微笑类型进行视频分类,并使用中性表情作为参考输入。所提出的模型具有以下贡献。首先,所开发的模型解决了个体之间外观差异引起的问题,因为它学习了个体中性表情与自发微笑和人为微笑之间的时空差异。其次,与使用真实和伪造对的传统方法相比,使用中性表情作为锚点可以提高模型的准确性。第三,通过将中性表情用作锚图像,可以开发用于自发微笑和人为微笑的全自动分类系统。此外,还设计了基于暹罗架构的 3D CNN 的可视化效果,以通过主成分分析 (PCA) 从准确性提高的角度分析,并通过特征分析来比较所提出的方法和传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf80/7765265/e943bc57ccf1/sensors-20-07184-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验