Suppr超能文献

一种用于解决高光谱解混中光谱变异性的增强线性混合模型。

An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing.

作者信息

Hong Danfeng, Yokoya Naoto, Chanussot Jocelyn, Zhu Xiao Xiang

出版信息

IEEE Trans Image Process. 2018 Nov 9. doi: 10.1109/TIP.2018.2878958.

Abstract

Hyperspectral imagery collected from airborne or satellite sources inevitably suffers from spectral variability, making it difficult for spectral unmixing to accurately estimate abundance maps. The classical unmixing model, the linear mixing model (LMM), generally fails to handle this sticky issue effectively. To this end, we propose a novel spectral mixture model, called the augmented linear mixing model (ALMM), to address spectral variability by applying a data-driven learning strategy in inverse problems of hyperspectral unmixing. The proposed approach models the main spectral variability (i.e., scaling factors) generated by variations in illumination or typography separately by means of the endmember dictionary. It then models other spectral variabilities caused by environmental conditions (e.g., local temperature and humidity, atmospheric effects) and instrumental configurations (e.g., sensor noise), as well as material nonlinear mixing effects, by introducing a spectral variability dictionary. To effectively run the data-driven learning strategy, we also propose a reasonable prior knowledge for the spectral variability dictionary, whose atoms are assumed to be low-coherent with spectral signatures of endmembers, which leads to a well-known low-coherence dictionary learning problem. Thus, a dictionary learning technique is embedded in the framework of spectral unmixing so that the algorithm can learn the spectral variability dictionary and estimate the abundance maps simultaneously. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.

摘要

从机载或卫星源收集的高光谱图像不可避免地存在光谱变异性,这使得光谱解混难以准确估计丰度图。经典的解混模型,即线性混合模型(LMM),通常无法有效处理这个棘手的问题。为此,我们提出了一种新颖的光谱混合模型,称为增强线性混合模型(ALMM),通过在高光谱解混的反问题中应用数据驱动的学习策略来解决光谱变异性。所提出的方法通过端元字典分别对由光照或地形变化产生的主要光谱变异性(即缩放因子)进行建模。然后,通过引入光谱变异性字典,对由环境条件(如局部温度和湿度、大气效应)和仪器配置(如传感器噪声)以及材料非线性混合效应引起的其他光谱变异性进行建模。为了有效地运行数据驱动的学习策略,我们还为光谱变异性字典提出了合理的先验知识,其原子被假定与端元的光谱特征低相干,这导致了一个著名的低相干字典学习问题。因此,将字典学习技术嵌入到光谱解混框架中,以便算法能够学习光谱变异性字典并同时估计丰度图。在合成数据集和真实数据集上进行了广泛的实验,以证明所提出的方法与先前的最先进方法相比的优越性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验