Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Int J Mol Sci. 2020 Dec 15;21(24):9545. doi: 10.3390/ijms21249545.
NMR studies of large proteins, over 100 kDa, in solution are technically challenging and, therefore, of considerable interest in the biophysics field. The challenge arises because the molecular tumbling of a protein in solution considerably slows as molecular mass increases, reducing the ability to detect resonances. In fact, the typical H-C or H-N correlation spectrum of a large protein, using a C- or N-uniformly labeled protein, shows severe line-broadening and signal overlap. Selective isotope labeling of methyl groups is a useful strategy to reduce these issues, however, the reduction in the number of signals that goes hand-in-hand with such a strategy is, in turn, disadvantageous for characterizing the overall features of the protein. When domain motion exists in large proteins, the domain motion differently affects backbone amide signals and methyl groups. Thus, the use of multiple NMR probes, such as H, F, C, and N, is ideal to gain overall structural or dynamical information for large proteins. We discuss the utility of observing different NMR nuclei when characterizing a large protein, namely, the 66 kDa multi-domain HIV-1 reverse transcriptase that forms a homodimer in solution. Importantly, we present a biophysical approach, complemented by biochemical assays, to understand not only the homodimer, p66/p66, but also the conformational changes that contribute to its maturation to a heterodimer, p66/p51, upon HIV-1 protease cleavage.
NMR 研究在溶液中大于 100 kDa 的大型蛋白质在技术上具有挑战性,因此在生物物理学领域引起了相当大的兴趣。挑战源于蛋白质在溶液中的分子旋转随着分子量的增加而大大减慢,从而降低了检测共振的能力。事实上,使用 C 或 N 均匀标记的蛋白质,大型蛋白质的典型 H-C 或 H-N 相关光谱显示出严重的谱线增宽和信号重叠。选择性同位素标记甲基基团是一种减少这些问题的有用策略,然而,与这种策略相伴的信号数量的减少反过来不利于表征蛋白质的整体特征。当大蛋白质中存在结构域运动时,结构域运动会对骨架酰胺信号和甲基基团产生不同的影响。因此,使用多个 NMR 探针,如 H、F、C 和 N,是获得大蛋白质整体结构或动力学信息的理想选择。我们讨论了在表征大型蛋白质时观察不同 NMR 核的实用性,即 66 kDa 多结构域 HIV-1 逆转录酶,它在溶液中形成同源二聚体。重要的是,我们提出了一种生物物理方法,辅以生化测定,不仅可以理解同源二聚体 p66/p66,还可以理解导致其成熟为 HIV-1 蛋白酶切割的异源二聚体 p66/p51 的构象变化。