Suppr超能文献

用于以小型化形式研究电压门控离子通道使用依赖性功能的并行全光学检测法。

Parallel All-Optical Assay to Study Use-Dependent Functioning of Voltage-Gated Ion Channels in a Miniaturized Format.

作者信息

Agus Viviana, Flak Tod A, Picardi Paola, Pizzi Sara, Rutigliano Lucia, Cainarca Silvia, Redaelli Loredana, Rolland Jean-Francois, Scarabottolo Lia

机构信息

AXXAM S.p.A, Bresso (Milan), Italy.

BioAutomatix LLC, Shaker Heights, OH, USA.

出版信息

SLAS Discov. 2021 Mar;26(3):460-469. doi: 10.1177/2472555220976083. Epub 2020 Dec 17.

Abstract

Voltage-gated ion channels produce rapid transmembrane currents responsible for action potential generation and propagation at the neuronal, muscular, and cardiac levels. They represent attractive clinical targets because their altered firing frequency is often the hallmark of pathological signaling leading to several neuromuscular disorders. Therefore, a method to study their functioning upon repeated triggers at different frequencies is desired to develop new drug molecules selectively targeting pathological phenotype. Optogenetics provides powerful tools for millisecond switch of cellular excitability in contactless, physiological, and low-cost settings. Nevertheless, its application to large-scale drug-screening operations is still limited by long processing time (due to sequential well read), rigid flashing pattern, lack of online compound addition, or high consumable costs of existing methods. Here, we developed a method that enables simultaneous analysis of 384-well plates with optical pacing, fluorescence recording, and liquid injection. We used our method to deliver programmable millisecond-switched depolarization through light-activated opsin in concomitance with continuous optical recording by a fluorescent indicator. We obtained 384-well pacing of recombinant voltage-activated sodium or calcium channels, as well as induced pluripotent stem cell (iPSC)-derived cardiomyocytes, in all-optical parallel settings. Furthermore, we demonstrated the use-dependent behavior of known ion channel blockers by optogenetic pacing at normal or pathological firing frequencies, obtaining very good signal reproducibility and accordance with electrophysiology data. Our method provides a novel physiological approach to study frequency-dependent drug behavior using reversible programmable triggers. The all-optical parallel settings combined with contained operational costs make our method particularly suited for large-scale drug-screening campaigns as well as cardiac liability studies.

摘要

电压门控离子通道产生快速跨膜电流,负责在神经元、肌肉和心脏水平上产生和传播动作电位。它们是有吸引力的临床靶点,因为其放电频率的改变通常是导致多种神经肌肉疾病的病理信号的标志。因此,需要一种方法来研究它们在不同频率的重复触发下的功能,以开发选择性靶向病理表型的新药分子。光遗传学在非接触、生理和低成本环境中为细胞兴奋性的毫秒级切换提供了强大工具。然而,其在大规模药物筛选操作中的应用仍然受到处理时间长(由于逐孔读取)、闪烁模式固定、缺乏在线化合物添加或现有方法消耗成本高的限制。在这里,我们开发了一种方法,能够通过光学起搏、荧光记录和液体注射同时分析384孔板。我们使用我们的方法,通过光激活视蛋白传递可编程的毫秒级切换去极化,同时用荧光指示剂进行连续光学记录。我们在全光学并行设置中对重组电压激活钠通道或钙通道以及诱导多能干细胞(iPSC)衍生的心肌细胞进行了384孔起搏。此外,我们通过在正常或病理放电频率下进行光遗传学起搏,证明了已知离子通道阻滞剂的使用依赖性行为,获得了非常好的信号重现性,并与电生理数据一致。我们的方法提供了一种新的生理学方法,使用可逆可编程触发来研究频率依赖性药物行为。全光学并行设置与可控的运营成本相结合,使我们的方法特别适合大规模药物筛选活动以及心脏安全性研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验