Fuentes Jesús
División de Ciencias e Ingenierías, Departamento de Física, Universidad de Guanajuato, Loma del Bosque 103, 37150, León, Guanajuato, Mexico.
Sci Rep. 2020 Dec 17;10(1):22256. doi: 10.1038/s41598-020-79309-8.
We explore a class of quantum control operations based on a wide family of harmonic magnetic fields that vary softly in time. Depending on the magnetic field amplitudes taking part, these control operations can produce either squeezing or loop (orbit) effects, and even parametric resonances, on the canonical variables. For these purposes we focus our attention on the evolution of observables whose dynamical picture is ascribed to a quadratic Hamiltonian that depends explicitly on time. In the first part of this work we survey such operations in terms of biharmonic magnetic fields. The dynamical analysis is simplified using a stability diagram in the amplitude space, where the points of each region will characterise a specific control operation. We discuss how the evolution loop effects are formed by fuzzy (non-commutative) trajectories that can be closed or open, in the latter case, even hiding some features that can be used to manipulate the operational time. In the second part, we generalise the case of biharmonic fields and translate the discussion to the case of polyharmonic fields. Using elementary properties of the Toeplitz matrices, we can derive exact solutions of the problem in a symmetric evolution interval, leading to the temporal profile of those magnetic fields suitable to achieve specific control operations. Some of the resulting fuzzy orbits can be destroyed by the influence of external forces, while others simply remain stable.
我们研究了一类基于随时间缓慢变化的广泛谐波磁场的量子控制操作。根据参与的磁场振幅,这些控制操作可以在正则变量上产生压缩或循环(轨道)效应,甚至产生参量共振。出于这些目的,我们将注意力集中在可观测量的演化上,其动力学图像归因于一个明确依赖于时间的二次哈密顿量。在这项工作的第一部分,我们根据双谐波磁场来审视此类操作。利用振幅空间中的稳定性图简化动力学分析,其中每个区域的点将表征特定的控制操作。我们讨论了演化循环效应是如何由模糊(非对易)轨迹形成的,这些轨迹可以是封闭的或开放的,在后一种情况下,甚至隐藏了一些可用于操纵操作时间的特征。在第二部分中,我们将双谐波场的情况进行推广,并将讨论转化为多谐波场的情况。利用托普利兹矩阵的基本性质,我们可以在对称演化区间内推导出该问题的精确解,从而得到适合实现特定控制操作的那些磁场的时间分布。一些由此产生的模糊轨道会受到外力影响而被破坏,而其他的则保持稳定。