Suppr超能文献

统计力学中的雷尼熵

Rényi Entropy in Statistical Mechanics.

作者信息

Fuentes Jesús, Gonçalves Jorge

机构信息

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4367 Luxembourg, Luxembourg.

Department of Plant Sciences, Cambridge University, Cambridge CB2 3EA, UK.

出版信息

Entropy (Basel). 2022 Aug 5;24(8):1080. doi: 10.3390/e24081080.

Abstract

Rényi entropy was originally introduced in the field of information theory as a parametric relaxation of Shannon (in physics, Boltzmann-Gibbs) entropy. This has also fuelled different attempts to generalise statistical mechanics, although mostly skipping the physical arguments behind this entropy and instead tending to introduce it artificially. However, as we will show, modifications to the theory of statistical mechanics are needless to see how Rényi entropy automatically arises as the average rate of change of free energy over an ensemble at different temperatures. Moreover, this notion is extended by considering distributions for isospectral, non-isothermal processes, resulting in relative versions of free energy, in which the Kullback-Leibler divergence or the relative version of Rényi entropy appear within the structure of the corrections to free energy. These generalisations of free energy recover the ordinary thermodynamic potential whenever isothermal processes are considered.

摘要

雷尼熵最初是在信息论领域作为香农(在物理学中为玻尔兹曼 - 吉布斯)熵的参数化松弛而引入的。这也激发了对统计力学进行推广的不同尝试,尽管大多跳过了该熵背后的物理依据,而是倾向于人为引入它。然而,正如我们将展示的,无需对统计力学理论进行修改就能明白雷尼熵如何作为不同温度下系综中自由能的平均变化率自动出现。此外,通过考虑等谱、非等温过程的分布来扩展这一概念,从而产生自由能的相对版本,其中库尔贝克 - 莱布勒散度或雷尼熵的相对版本出现在自由能修正结构中。只要考虑等温过程,这些自由能的推广就能恢复普通的热力学势。

相似文献

1
Rényi Entropy in Statistical Mechanics.统计力学中的雷尼熵
Entropy (Basel). 2022 Aug 5;24(8):1080. doi: 10.3390/e24081080.
3
Quantum Rényi relative entropies affirm universality of thermodynamics.量子雷尼相对熵证实了热力学的普适性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042161. doi: 10.1103/PhysRevE.92.042161. Epub 2015 Oct 29.
4
Shannon-entropy-based nonequilibrium "entropic" temperature of a general distribution.基于香农熵的一般分布的非平衡“熵”温度。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031151. doi: 10.1103/PhysRevE.85.031151. Epub 2012 Mar 30.
5
Rényi entropy, abundance distribution, and the equivalence of ensembles.Renyi 熵、丰度分布和系综等价。
Phys Rev E. 2016 May;93(5):052418. doi: 10.1103/PhysRevE.93.052418. Epub 2016 May 24.
6
The Case for Shifting the Rényi Entropy.关于转移雷尼熵的理由。
Entropy (Basel). 2019 Jan 9;21(1):46. doi: 10.3390/e21010046.
9
Entropy, Carnot Cycle, and Information Theory.熵、卡诺循环与信息论。
Entropy (Basel). 2018 Dec 20;21(1):3. doi: 10.3390/e21010003.

本文引用的文献

1
Rényi Entropy and Free Energy.雷尼熵与自由能。
Entropy (Basel). 2022 May 16;24(5):706. doi: 10.3390/e24050706.
8
Observability of Rényi's entropy.雷尼熵的可观测性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026128. doi: 10.1103/PhysRevE.69.026128. Epub 2004 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验