Suppr超能文献

一种由九个基因组成的免疫相关特征作为胃癌患者的预后生物标志物。

An immune-relevant signature of nine genes as a prognostic biomarker in patients with gastric carcinoma.

作者信息

Wang Bing, Zhang Yang

机构信息

Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China.

出版信息

Open Med (Wars). 2020 Sep 3;15(1):850-859. doi: 10.1515/med-2020-0142. eCollection 2020.

Abstract

BACKGROUND

As one of the most common malignant tumors worldwide, the morbidity and mortality of gastric carcinoma (GC) are gradually increasing. The aim of this study was to construct a signature according to immune-relevant genes to predict the survival outcome of GC patients using The Cancer Genome Altas (TCGA).

METHODS

Univariate Cox regression analysis was used to assess the relationship between immune-relevant genes regarding the prognosis of patients with GC. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to select prognostic immune-relevant genes and to establish the signature for the prognostic evaluation of patients with GC. Multivariate Cox regression analysis and Kaplan-Meier survival analysis were used to assess the independent prognostic ability of the immune-relevant gene signature.

RESULTS

A total of 113 prognostic immune-relevant genes were identified using univariate Cox proportional hazards regression analysis. A signature of nine immune-relevant genes was constructed using the LASSO Cox regression. The GC samples were assigned to two groups (low- and high risk) according to the optimal cutoff value of the signature score. Compared with the patients in the high-risk group, patients in the low-risk group had a significantly better prognosis in the TCGA and GSE84437 cohorts (log-rank test < 0.001). Multivariate Cox regression analysis demonstrated that the signature of nine immune-relevant genes might serve as an independent predictor of GC.

CONCLUSIONS

Our results showed that the signature of nine immune-relevant genes may potentially serve as a prognostic prediction for patients with GC, which may contribute to the decision-making of personalized treatment for the patients.

摘要

背景

作为全球最常见的恶性肿瘤之一,胃癌(GC)的发病率和死亡率正在逐渐上升。本研究的目的是根据免疫相关基因构建一个特征,以使用癌症基因组图谱(TCGA)预测GC患者的生存结果。

方法

采用单因素Cox回归分析评估免疫相关基因与GC患者预后的关系。使用最小绝对收缩和选择算子(LASSO)Cox回归模型选择预后免疫相关基因,并建立用于GC患者预后评估的特征。采用多因素Cox回归分析和Kaplan-Meier生存分析评估免疫相关基因特征的独立预后能力。

结果

通过单因素Cox比例风险回归分析共鉴定出113个预后免疫相关基因。使用LASSO Cox回归构建了一个由9个免疫相关基因组成的特征。根据特征分数的最佳临界值,将GC样本分为两组(低风险和高风险)。在TCGA和GSE84437队列中,与高风险组患者相比,低风险组患者的预后明显更好(对数秩检验<0.001)。多因素Cox回归分析表明,9个免疫相关基因的特征可能作为GC患者的独立预测指标。

结论

我们的结果表明,9个免疫相关基因的特征可能潜在地作为GC患者的预后预测指标,这可能有助于为患者制定个性化治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4260/7718618/b4d6967c8edc/j_med-2020-0142-fig001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验