Balantekin A B, Band H R, Bass C D, Bergeron D E, Berish D, Bowden N S, Brodsky J P, Bryan C D, Classen T, Conant A J, Deichert G, Diwan M V, Dolinski M J, Erickson A, Foust B T, Gaison J K, Galindo-Uribarri A, Gilbert C E, Hackett B T, Hans S, Hansell A B, Heeger K M, Heffron B, Jaffe D E, Ji X, Jones D C, Kyzylova O, Lane C E, Langford T J, LaRosa J, Littlejohn B R, Lu X, Maricic J, Mendenhall M P, Milincic R, Mitchell I, Mueller P E, Mumm H P, Napolitano J, Neilson R, Nikkel J A, Norcini D, Nour S, Palomino-Gallo J L, Pushin D A, Qian X, Romero-Romero E, Rosero R, Surukuchi P T, Tyra M A, Varner R L, White C, Wilhelmi J, Woolverton A, Yeh M, Zhang A, Zhang C, Zhang X
Department of Physics, University of Wisconsin, Madison, Madison, WI 53706, USA.
Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520, USA.
Phys Rev C. 2020;101. doi: 10.1103/PhysRevC.101.054605.
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of is important when making theoretical predictions. One source of that is often neglected arises from the irradiation of the nonfuel materials in reactors. The rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel contribution.
近年来,反应堆中微子实验在精度方面有了重大改进。随着实验不确定性低于理论不确定性,在进行理论预测时仔细考虑所有的来源很重要。一个经常被忽视的来源是反应堆中非燃料材料的辐照。这些来源的速率和能量因反应堆类型、配置以及反应堆周期中的采样阶段而有很大差异,必须针对每个实验独立仔细考虑。在本文中,我们提出了一种形式主义,用于选择反应堆和靶材料上中子俘获产生的可能的来源。我们将这种形式主义应用于橡树岭国家实验室的高通量同位素反应堆(HFIR),它是精密反应堆振荡和能谱测量(PROSPECT)实验的来源。总体而言,我们观察到HFIR对PROSPECT的非燃料贡献在反β衰变阈值以上达到1%,在1.8 - 2.0 MeV范围内最大贡献为9%。对于像HFIR这样的研究反应堆,由于除了为同位素生产故意辐照靶材料外,还选择了结构和反射材料,非燃料贡献可能特别高。我们表明,以低浓缩铀为燃料的典型商用压水反应堆的非燃料贡献将显著更小。