Suppr超能文献

用于同位素生产目标设计的通用高通量同位素反应堆特定元启发式优化框架的验证。

Validation of a general-use high flux isotope reactor-specific metaheuristic optimization framework for isotope production target design.

作者信息

Salyer C, Bogetic S, Griswold J

机构信息

Department of Nuclear Engineering University of Tennessee, Knoxville, Tickle College of Engineering 863 Neyland Dr, Knoxville, TN 37996, USA.

Department of Nuclear Engineering University of Tennessee, Knoxville, Tickle College of Engineering 863 Neyland Dr, Knoxville, TN 37996, USA.

出版信息

Appl Radiat Isot. 2025 Feb;216:111592. doi: 10.1016/j.apradiso.2024.111592. Epub 2024 Nov 20.

Abstract

Currently, advanced optimization methods are limited for isotope production (IP) campaigns at the US Department of Energy's High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory (ORNL), leading to years of conservative and historical approaches with minimal innovation. Moreover, the growing demand for new and existing isotopes is beginning to challenge the capacity of HFIR. This work explores the development and integration of metaheuristic (MH) optimization techniques for more efficient target design and irradiation strategies. As a test case, the optimization framework was applied to a routinely produced isotope at HFIR, W, with the objective of maximizing the specific activity (SA), a key production metric. The framework includes Gnowee, a Python-based MH optimization algorithm, coupled with the Monte Carlo N-Particle version 6 (MCNP6) and Oak Ridge Isotope Generation (ORIGEN) activation/depletion/decay codes to design, simulate, and evaluate thousands of potential target design and irradiation scheme candidates. The framework relies on mock input files, design and irradiation variables for the algorithm to select, as well as a user-defined objective function to score each candidate based on the returned SA. Given the inherent complexities and computational time required when modeling and simulating the full HFIR model, a novel simplified MCNP6 model is presented in this article to increase the computational efficiency of the framework. The variables explored include irradiation location, number of cycles, and the number of W samples. Over 1,000 simplified model candidates were simulated in the same amount of time as a single full HFIR model run. By comparing the simplified model optimization's top candidate(s) with the full HFIR model results, the framework was verified to accurately explore the design space and converge on the top performing candidates. Lastly, past experimental data was compared to the data generated by the framework/model and both show that fewer W rings return higher SA, as expected. The verified and validated techniques provide a standardized solution to increase IP efficiencies by exploring thousands of unique target designs and irradiation strategies in a similar time as that required to run a single case in the full HFIR MCNP6 model. Both the novel simplified model and the full HFIR model show a more than 30% increase in SA if all presented modifications are applied to the current design and strategy. Thus, the objective of building a general-use, computationally efficient optimization framework for HFIR IP was accomplished, and has the potential to be applied to other IP campaigns.

摘要

目前,在美国能源部位于橡树岭国家实验室(ORNL)的高通量同位素反应堆(HFIR)进行同位素生产(IP)活动时,先进的优化方法受到限制,导致多年来一直采用保守的传统方法,创新极少。此外,对新同位素和现有同位素不断增长的需求开始对HFIR的产能构成挑战。这项工作探索了元启发式(MH)优化技术的开发与整合,以实现更高效的靶材设计和辐照策略。作为一个测试案例,该优化框架应用于HFIR常规生产的一种同位素——钨(W),目标是最大化比活度(SA),这是一个关键的生产指标。该框架包括Gnowee,一种基于Python的MH优化算法,与蒙特卡罗N粒子版本6(MCNP6)和橡树岭同位素生成(ORIGEN)活化/消耗/衰变代码相结合,用于设计、模拟和评估数千种潜在的靶材设计和辐照方案候选方案。该框架依赖于模拟输入文件、算法要选择的设计和辐照变量,以及一个用户定义的目标函数,根据返回的SA对每个候选方案进行评分。鉴于对完整的HFIR模型进行建模和模拟时固有的复杂性和所需的计算时间,本文提出了一种新颖的简化MCNP6模型,以提高该框架的计算效率。探索的变量包括辐照位置、循环次数和W样品数量。在与单次完整HFIR模型运行相同的时间内,对1000多个简化模型候选方案进行了模拟。通过将简化模型优化的顶级候选方案与完整HFIR模型的结果进行比较,验证了该框架能够准确地探索设计空间并收敛到性能最佳的候选方案。最后,将过去的实验数据与该框架/模型生成的数据进行比较,两者均表明,正如预期的那样,较少的W环能产生更高的SA。经过验证和确认的技术提供了一种标准化的解决方案,通过在与完整HFIR MCNP6模型运行单个案例所需时间相似的时间内探索数千种独特的靶材设计和辐照策略,提高IP效率。如果将所有提出的修改应用于当前的设计和策略,新颖的简化模型和完整的HFIR模型的SA均显示出超过30%的增长。因此,为HFIR IP构建一个通用的、计算高效的优化框架的目标得以实现,并且有可能应用于其他IP活动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验