Suppr超能文献

一种用于从放射学报告中提取空间触发词的混合深度学习方法。

A Hybrid Deep Learning Approach for Spatial Trigger Extraction from Radiology Reports.

作者信息

Datta Surabhi, Roberts Kirk

机构信息

School of Biomedical Informatics, University of Texas Health Science Center at Houston Houston TX, USA.

出版信息

Proc Conf Empir Methods Nat Lang Process. 2020 Nov;2020:50-55. doi: 10.18653/v1/2020.splu-1.6.

Abstract

Radiology reports contain important clinical information about patients which are often tied through spatial expressions. Spatial expressions (or triggers) are mainly used to describe the positioning of radiographic findings or medical devices with respect to some anatomical structures. As the expressions result from the mental visualization of the radiologist's interpretations, they are varied and complex. The focus of this work is to automatically identify the spatial expression terms from three different radiology sub-domains. We propose a hybrid deep learning-based NLP method that includes - 1) generating a set of candidate spatial triggers by exact match with the known trigger terms from the training data, 2) applying domain-specific constraints to filter the candidate triggers, and 3) utilizing a BERT-based classifier to predict whether a candidate trigger is a true spatial trigger or not. The results are promising, with an improvement of 24 points in the average F1 measure compared to a standard BERT-based sequence labeler.

摘要

放射学报告包含有关患者的重要临床信息,这些信息通常通过空间表达联系起来。空间表达(或触发词)主要用于描述影像学检查结果或医疗设备相对于某些解剖结构的位置。由于这些表达是放射科医生解读的心理可视化结果,所以它们多样且复杂。这项工作的重点是从三个不同的放射学子领域中自动识别空间表达术语。我们提出了一种基于深度学习的混合自然语言处理方法,该方法包括:1)通过与训练数据中的已知触发词进行精确匹配来生成一组候选空间触发词;2)应用特定领域的约束来筛选候选触发词;3)利用基于BERT的分类器来预测候选触发词是否为真正的空间触发词。结果很有前景,与基于标准BERT的序列标注器相比,平均F1度量提高了24分。

相似文献

本文引用的文献

5
Enhancing clinical concept extraction with contextual embeddings.利用上下文嵌入增强临床概念提取。
J Am Med Inform Assoc. 2019 Nov 1;26(11):1297-1304. doi: 10.1093/jamia/ocz096.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验