Suppr超能文献

一种用于识别放射学报告中可采取行动的发现的解剖位置的机器学习方法。

A machine learning approach for identifying anatomical locations of actionable findings in radiology reports.

作者信息

Roberts Kirk, Rink Bryan, Harabagiu Sanda M, Scheuermann Richard H, Toomay Seth, Browning Travis, Bosler Teresa, Peshock Ronald

机构信息

The University of Texas at Dallas, Richardson, TX, USA.

出版信息

AMIA Annu Symp Proc. 2012;2012:779-88. Epub 2012 Nov 3.

Abstract

Recognizing the anatomical location of actionable findings in radiology reports is an important part of the communication of critical test results between caregivers. One of the difficulties of identifying anatomical locations of actionable findings stems from the fact that anatomical locations are not always stated in a simple, easy to identify manner. Natural language processing techniques are capable of recognizing the relevant anatomical location by processing a diverse set of lexical and syntactic contexts that correspond to the various ways that radiologists represent spatial relations. We report a precision of 86.2%, recall of 85.9%, and F(1)-measure of 86.0 for extracting the anatomical site of an actionable finding. Additionally, we report a precision of 73.8%, recall of 69.8%, and F(1)-measure of 71.8 for extracting an additional anatomical site that grounds underspecified locations. This demonstrates promising results for identifying locations, while error analysis reveals challenges under certain contexts. Future work will focus on incorporating new forms of medical language processing to improve performance and transitioning our method to new types of clinical data.

摘要

识别放射学报告中可采取行动的检查结果的解剖位置是医护人员之间关键检查结果沟通的重要组成部分。识别可采取行动的检查结果的解剖位置的困难之一在于,解剖位置并不总是以简单、易于识别的方式表述。自然语言处理技术能够通过处理与放射科医生表示空间关系的各种方式相对应的各种词汇和句法上下文来识别相关的解剖位置。我们报告了提取可采取行动的检查结果的解剖部位时的精确率为86.2%、召回率为85.9%、F(1)值为86.0。此外,我们报告了提取为未明确指定位置提供依据的额外解剖部位时的精确率为73.8%、召回率为69.8%、F(1)值为71.8。这表明在识别位置方面取得了有前景的结果,而错误分析揭示了某些情况下的挑战。未来的工作将集中于纳入新形式的医学语言处理以提高性能,并将我们的方法应用于新型临床数据。

相似文献

引用本文的文献

6
Clinical concept extraction: A methodology review.临床概念提取:方法学综述。
J Biomed Inform. 2020 Sep;109:103526. doi: 10.1016/j.jbi.2020.103526. Epub 2020 Aug 6.
10
Clinical information extraction applications: A literature review.临床信息提取应用:文献综述。
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.

本文引用的文献

1
A flexible framework for deriving assertions from electronic medical records.从电子病历中推导断言的灵活框架。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):568-73. doi: 10.1136/amiajnl-2011-000152. Epub 2011 Jul 1.
2
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
3
A de-identifier for medical discharge summaries.一份用于出院小结的去标识信息。
Artif Intell Med. 2008 Jan;42(1):13-35. doi: 10.1016/j.artmed.2007.10.001. Epub 2007 Nov 28.
4
Automated encoding of clinical documents based on natural language processing.基于自然语言处理的临床文档自动编码
J Am Med Inform Assoc. 2004 Sep-Oct;11(5):392-402. doi: 10.1197/jamia.M1552. Epub 2004 Jun 7.
7
Automatic structuring of radiology free-text reports.放射学自由文本报告的自动结构化
Radiographics. 2001 Jan-Feb;21(1):237-45. doi: 10.1148/radiographics.21.1.g01ja18237.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验