Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Science Key Lab, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China.
Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA.
Cochrane Database Syst Rev. 2020 Dec 18;12(12):CD012687. doi: 10.1002/14651858.CD012687.pub2.
Refractive errors (conditions in which the eye fails to focus objects accurately on the retina due to defects in the refractive system), are the most common cause of visual impairment. Myopia, hyperopia, and astigmatism are low-order aberrations, usually corrected with spectacles, contact lenses, or conventional refractive surgery. Higher-order aberrations (HOAs) can be quantified with wavefront aberration instruments and corrected using wavefront-guided or wavefront-optimized laser surgery. Wavefront-guided ablations are based on preoperative measurements of HOAs; wavefront-optimized ablations are designed to minimize induction of new HOAs while preserving naturally occurring aberrations. Two wavefront procedures are expected to produce better visual acuity than conventional procedures.
The primary objective was to compare effectiveness and safety of wavefront procedures, laser-assisted in-situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) or laser epithelial keratomileusis (LASEK) versus corresponding conventional procedures, for correcting refractive errors in adults for postoperative uncorrected visual acuity, residual refractive errors, and residual HOAs. The secondary objective was to compare two wavefront procedures.
We searched the Cochrane Central Register of Controlled Trials (CENTRAL, which contains the Cochrane Eyes and Vision Trials Register; 2019, Issue 8); Ovid MEDLINE; Ovid Embase; Latin American and Caribbean Health Sciences (LILACS); the ISRCTN registry; ClinicalTrials.gov and the WHO ICTRP. The date of the search was 6 August 2019. We imposed no restrictions by language or year of publication. We used the Science Citation Index (September 2013) and searched the reference lists of included trials to identify additional relevant trials.
We included randomized controlled trials (RCTs) comparing either wavefront modified with conventional refractive surgery or wavefront-optimized with wavefront-guided refractive surgery in participants aged ⪰ 18 years with refractive errors.
We used standard Cochrane methodology.
We identified 33 RCTs conducted in Asia, Europe and United States, totaling 1499 participants (2797 eyes). Participants had refractive errors ranging from high myopia to low hyperopia. Studies reported at least one of the following review-specific outcomes based on proportions of eyes: with uncorrected visual acuity (UCVA) of 20/20 or better, without loss of one or more lines of best spectacle-corrected visual acuity (BSCVA), within ± 0.50 diopters (D) of target refraction, with HOAs and adverse events. Study characteristics and risk of bias Participants were mostly women, mean age 29 and 53 years, and without previous refractive surgery, ocular pathology or systemic comorbidity. We could not judge risks of bias for most domains of most studies. Most studies in which both eyes of a participant were analyzed failed to account for correlations between two eyes in the analysis and reporting of outcomes. Findings For the primary comparison between wavefront (PRK or LASIK or LASEK) and corresponding conventional procedures, 12-month outcome data were available from only one study of PRK with 70 participants. No evidence of more favorable outcomes of wavefront PRK on proportion of eyes: with UCVA of 20/20 or better (risk ratio [RR] 1.03, 95% confidence interval (CI) 0.86 to 1.24); without loss of one or more lines of BSCVA (RR 0.94, 95% CI 0.81 to 1.09); within ± 0.5 D of target refraction (RR 1.03, 95% CI 0.86 to 1.24); and mean spherical equivalent (mean difference [MD] 0.04, 95% CI -0.11 to 0.18). The evidence for each effect estimate was of low certainty. No study reported HOAs at 12 months. At six months, the findings of two to eight studies showed that overall effect estimates and estimates by subgroup of PRK or LASIK or LASEK were consistent with those for PRK at 12 month, and suggest no difference in all outcomes. The certainty of evidence for each outcome was low. For the comparison between wavefront-optimized and wavefront-guided procedures at 12 months, the overall effect estimates for proportion of eyes: with UCVA of 20/20 or better (RR 1.00, 95% CI 0.99 to 1.02; 5 studies, 618 participants); without loss of one or more lines of BSCVA (RR 0.99, 95% CI 0.96 to 1.02; I = 0%; 5 studies, 622 participants); within ± 0.5 diopters of target refraction (RR 1.02, 95% CI 0.95 to 1.09; I = 33%; 4 studies, 480 participants) and mean HOAs (MD 0.03, 95% CI -0.01 to 0.07; I = 41%; 5 studies, 622 participants) showed no evidence of a difference between the two groups. Owing to substantial heterogeneity, we did not calculate an overall effect estimate for mean spherical equivalent at 12 months, but point estimates consistently suggested no difference between wavefront-optimized PRK versus wavefront-guided PRK. However, wavefront-optimized LASIK compared with wavefront-guided LASIK may improve mean spherical equivalent (MD -0.14 D, 95% CI -0.19 to -0.09; 4 studies, 472 participants). All effect estimates were of low certainty of evidence. At six months, the results were consistent with those at 12 months based on two to six studies. The findings suggest no difference between two wavefront procedures for any of the outcomes assessed, except for the subgroup of wavefront-optimized LASIK which showed probable improvement in mean spherical equivalent (MD -0.12 D, 95% CI -0.19 to -0.05; I = 0%; 3 studies, 280 participants; low certainty of evidence) relative to wavefront-guided LASIK. We found a single study comparing wavefront-guided LASIK versus wavefront-guided PRK at six and 12 months. At both time points, effect estimates consistently supported no difference between two procedures. The certain of evidence was very low for all estimates. Adverse events Significant visual loss or optical side effects that were reported were similar between groups.
AUTHORS' CONCLUSIONS: This review suggests that at 12 months and six months postoperatively, there was no important difference between wavefront versus conventional refractive surgery or between wavefront-optimized versus wavefront-guided surgery in the clinical outcomes analyzed. The low certainty of the cumulative evidence reported to date suggests that further randomized comparisons of these surgical approaches would provide more precise estimates of effects but are unlikely to modify our conclusions. Future trials may elect to focus on participant-reported outcomes such as satisfaction with vision before and after surgery and effects of remaining visual aberrations, in addition to contrast sensitivity and clinical outcomes analyzed in this review.
屈光不正(由于屈光系统的缺陷导致眼睛无法准确聚焦在视网膜上的情况)是视力损害的最常见原因。近视、远视和散光都是低阶像差,通常可以通过眼镜、隐形眼镜或传统的屈光手术来矫正。高阶像差(HOAs)可以通过波前像差仪进行量化,并通过波前引导或波前优化的激光手术进行矫正。波前引导的消融术是基于术前高阶像差的测量值;波前优化的消融术旨在在保留自然像差的同时最小化新产生的高阶像差。两种波前手术预计比传统手术产生更好的视力。
本研究的主要目的是比较波前手术(激光辅助原位角膜磨镶术(LASIK)或光性角膜切削术(PRK)或激光上皮下角膜磨镶术(LASEK)与相应的常规手术),用于矫正成年患者的屈光不正,术后 12 个月未矫正视力、残余屈光不正和残余高阶像差,以评估波前手术的有效性和安全性。次要目的是比较两种波前手术。
我们检索了 Cochrane 中心对照试验注册库(CENTRAL,包含 Cochrane 眼科和视力试验注册库;2019 年,第 8 期);Ovid MEDLINE;Ovid Embase;拉丁美洲和加勒比健康科学(LILACS);ISRCTN 注册处;ClinicalTrials.gov 和世界卫生组织国际临床试验注册平台。检索日期为 2019 年 8 月 6 日。我们没有对语言或发表年份进行任何限制。我们使用了科学引文索引(2013 年 9 月)并检索了纳入试验的参考文献,以确定其他相关试验。
我们纳入了比较波前修正的常规屈光手术或波前优化的波前引导屈光手术的随机对照试验(RCTs),参与者年龄 ⪰ 18 岁,有屈光不正。
我们使用了标准的 Cochrane 方法。
我们确定了 33 项 RCTs,这些 RCTs分别在亚洲、欧洲和美国进行,共纳入了 1499 名参与者(2797 只眼)。参与者的屈光不正范围从高度近视到低度远视。研究报告了至少一个基于比例的眼部评估特定结果:未矫正视力(UCVA)为 20/20 或更好、无最佳矫正视力(BCVA)损失一行或更多、屈光度在± 0.50 屈光度范围内、高阶像差和不良事件。研究特征和偏倚风险:参与者主要为女性,平均年龄为 29 岁和 53 岁,且无既往屈光手术、眼部病变或全身合并症。我们无法判断大多数研究的大多数领域的偏倚风险。大多数参与者的每只眼都进行了分析的研究,在分析和报告结果时未能考虑到两只眼之间的相关性。
对于波前(PRK 或 LASIK 或 LASEK)与相应常规手术之间的主要比较,只有一项关于 PRK 的研究在 70 名参与者中提供了 12 个月的术后数据。没有证据表明波前 PRK 在以下方面有更好的结果:未矫正视力(UCVA)为 20/20 或更好(风险比[RR]1.03,95%置信区间[CI]0.86 至 1.24);最佳矫正视力(BCVA)无损失一行或更多(RR0.94,95%CI0.81 至 1.09);屈光度在± 0.5 D 范围内(RR1.03,95%CI0.86 至 1.24);平均球镜等效(平均差[MD]0.04,95%CI-0.11 至 0.18)。每个效应估计的证据质量均为低。没有研究报告 12 个月的高阶像差。在 6 个月时,两项至八项研究的结果表明,总体效应估计值和 PRK 或 LASIK 或 LASEK 的亚组估计值与 12 个月时的 PRK 结果一致,表明在所有结果中没有差异。每个结果的证据确定性都很低。对于 12 个月时波前优化与波前引导手术的比较,以下方面的眼部比例的总体效应估计值:未矫正视力(UCVA)为 20/20 或更好(RR1.00,95%CI1.00 至 1.02;5 项研究,618 名参与者);最佳矫正视力(BCVA)无损失一行或更多(RR0.99,95%CI0.96 至 1.02;I = 0%;5 项研究,622 名参与者);屈光度在± 0.5 屈光度范围内(RR1.02,95%CI0.95 至 1.09;I = 33%;4 项研究,480 名参与者)和平均高阶像差(MD0.03,95%CI-0.01 至 0.07;I = 41%;5 项研究,622 名参与者)表明两组之间没有差异的证据。由于存在高度异质性,我们没有计算 12 个月时平均球镜等效的总体效应估计值,但点估计值一致表明波前优化的 PRK 与波前引导的 PRK 之间没有差异。然而,与波前引导的 LASIK 相比,波前优化的 LASIK 可能会改善平均球镜等效(MD-0.14D,95%CI-0.19 至-0.09;4 项研究,472 名参与者)。所有的效应估计值都具有低确定性的证据。在 6 个月时,基于两项至六项研究的结果与 12 个月时的结果一致。结果表明,两种波前手术在除波前优化的 LASIK 组外的所有评估结果中均无差异,该组显示平均球镜等效(MD-0.12D,95%CI-0.19 至-0.05;I = 0%;3 项研究,280 名参与者;低确定性证据)与波前引导的 LASIK 相比可能有改善,但证据的确定性非常低。我们发现了一项比较波前引导的 LASIK 与波前引导的 PRK 的研究,该研究在 6 个月和 12 个月时进行。在这两个时间点,效应估计值一致支持两种手术程序之间没有差异。所有估计值的证据确定性都非常低。
本综述表明,在 12 个月和 6 个月的术后随访中,波前手术与常规屈光手术相比,或波前优化手术与波前引导手术相比,在分析的临床结果方面没有重要差异。报告的显著视力损失或光学副作用在两组之间相似。目前报告的累积证据的确定性较低,表明进一步的随机比较这些手术方法可能会提供更精确的估计值,但不太可能改变我们的结论。未来的试验可能会选择关注参与者对手术前后视力的满意度和剩余视觉像差的影响,以及对比敏感度和本综述中分析的临床结果等方面,而不是高阶像差。