Suppr超能文献

跨组织、健康状况和性别的人类衰老转录组建模。

Modeling the human aging transcriptome across tissues, health status, and sex.

机构信息

Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA.

Adiv A. Johnson, Tucson, AZ, USA.

出版信息

Aging Cell. 2021 Jan;20(1):e13280. doi: 10.1111/acel.13280. Epub 2020 Dec 18.

Abstract

Aging in humans is an incredibly complex biological process that leads to increased susceptibility to various diseases. Understanding which genes are associated with healthy aging can provide valuable insights into aging mechanisms and possible avenues for therapeutics to prolong healthy life. However, modeling this complex biological process requires an enormous collection of high-quality data along with cutting-edge computational methods. Here, we have compiled a large meta-analysis of gene expression data from RNA-Seq experiments available from the Sequence Read Archive. We began by reprocessing more than 6000 raw samples-including mapping, filtering, normalization, and batch correction-to generate 3060 high-quality samples spanning a large age range and multiple different tissues. We then used standard differential expression analyses and machine learning approaches to model and predict aging across the dataset, achieving an R value of 0.96 and a root-mean-square error of 3.22 years. These models allow us to explore aging across health status, sex, and tissue and provide novel insights into possible aging processes. We also explore how preprocessing parameters affect predictions and highlight the reproducibility limits of these machine learning models. Finally, we develop an online tool for predicting the ages of human transcriptomic samples given raw gene expression counts. Together, this study provides valuable resources and insights into the transcriptomics of human aging.

摘要

人类衰老过程是一个极其复杂的生物学过程,会导致对各种疾病的易感性增加。了解哪些基因与健康衰老相关,可以深入了解衰老机制,并为延长健康寿命提供潜在的治疗方法。然而,模拟这个复杂的生物学过程需要大量高质量的数据和先进的计算方法。在这里,我们对来自序列读取档案的 RNA-Seq 实验的基因表达数据进行了大规模的荟萃分析。我们首先重新处理了 6000 多个原始样本,包括映射、过滤、归一化和批次校正,以生成跨越广泛年龄范围和多个不同组织的 3060 个高质量样本。然后,我们使用标准差异表达分析和机器学习方法对数据集进行建模和预测衰老,达到了 0.96 的 R 值和 3.22 年的均方根误差。这些模型使我们能够探索健康状况、性别和组织中的衰老,并提供对可能的衰老过程的新见解。我们还探讨了预处理参数如何影响预测,并强调了这些机器学习模型的可重复性限制。最后,我们开发了一种在线工具,用于根据原始基因表达计数预测人类转录组样本的年龄。总之,这项研究为人类衰老的转录组学提供了有价值的资源和见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed66/7811842/4fa94dcc58c2/ACEL-20-e13280-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验