School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States.
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States.
J Am Chem Soc. 2020 Dec 30;142(52):21842-21851. doi: 10.1021/jacs.0c10474. Epub 2020 Dec 18.
The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole-phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-proton-coupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (∼1000 mV s) a chemically reversible process is observed with an characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. This work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.
通过使用吡啶基苯并咪唑-苯酚模型,研究了由单电子电化学氧化/还原引发的化学可逆多质子迁移中定义明确的氢键网络的基本作用。为这些研究设计的两种分子结构在吡啶环上 N 原子的位置上有所不同。在其中一种结构中,氢键网络从苯酚延伸到吡啶基团,贯穿整个分子,没有中断。实验和理论证据表明,在苯酚电化学氧化时,发生了一个整体化学可逆的两个质子耦合电子转移过程(E2PT)。这个 E2PT 过程产生吡啶鎓阳离子,无论循环伏安扫描速率如何,都可以观察到。相比之下,当氢键网络中断时,就像异构体中那样,在高扫描速率(约 1000 mV s)下,观察到一个化学可逆过程,其特征是一个质子耦合电子转移过程(E1PT)。在缓慢的循环伏安扫描速率(<1000 mV s)下,苯酚的氧化导致整体化学不可逆的两个质子耦合电子转移过程,其中第二个质子转移步骤产生通过红外光谱电化学检测到的吡啶鎓阳离子。在这种情况下,我们假设初始的分子内质子耦合电子转移步骤产生 E1PT 产物,然后是一个缓慢的、可能涉及第二个质子转移到 E2PT 产物的分子间化学步骤。理论计算转移质子的静电势和电场,为这些系统的电化学行为提供了深入的了解。这项工作提出了一个基本的设计原则,用于构建分子导线,其中质子通过质子传递机制在不同距离上迁移。