Odella Emmanuel, Secor Maxim, Elliott Mackenna, Groy Thomas L, Moore Thomas A, Hammes-Schiffer Sharon, Moore Ana L
School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
Chem Sci. 2021 Aug 23;12(38):12667-12675. doi: 10.1039/d1sc03782j. eCollection 2021 Oct 6.
Proton-coupled electron transfer (PCET) reactions depend on the hydrogen-bond connectivity between sites of proton donors and acceptors. The 2-(2'-hydroxyphenyl) benzimidazole (BIP) based systems, which mimic the natural Tyr-His190 pair of Photosystem II, have been useful for understanding the associated PCET process triggered by one-electron oxidation of the phenol. Substitution of the benzimidazole by an appropriate terminal proton acceptor (TPA) group allows for two-proton translocations. However, the prototropic properties of substituted benzimidazole rings and rotation around the bond linking the phenol and the benzimidazole can lead to isomers that interrupt the intramolecular hydrogen-bonded network and thereby prevent a second proton translocation. Herein, a strategic symmetrization of a benzimidazole based system with two identical TPAs yields an uninterrupted network of intramolecular hydrogen bonds regardless of the isomeric form. NMR data confirms the presence of a single isomeric form in the disubstituted system but not in the monosubstituted system in certain solvents. Infrared spectroelectrochemistry demonstrates a two-proton transfer process associated with the oxidation of the phenol occurring at a lower redox potential in the disubstituted system relative to its monosubstituted analogue. Computational studies support these findings and show that the disubstituted system stabilizes the oxidized two-proton transfer product through the formation of a bifurcated hydrogen bond. Considering the prototropic properties of the benzimidazole heterocycle in the context of multiple PCET will improve the next generation of novel, bioinspired constructs built by concatenated units of benzimidazoles, thus allowing proton translocations at nanoscale length.
质子耦合电子转移(PCET)反应取决于质子供体和受体位点之间的氢键连接性。基于2-(2'-羟基苯基)苯并咪唑(BIP)的体系模仿了光系统II中天然的Tyr-His190对,有助于理解由酚的单电子氧化引发的相关PCET过程。用合适的末端质子受体(TPA)基团取代苯并咪唑可实现双质子转移。然而,取代苯并咪唑环的质子转移性质以及酚与苯并咪唑连接键周围的旋转会导致异构体的产生,这些异构体会中断分子内氢键网络,从而阻止第二个质子转移。在此,对具有两个相同TPA的苯并咪唑基体系进行策略性对称化处理,无论异构体形式如何,都能产生不间断的分子内氢键网络。核磁共振数据证实,在某些溶剂中,二取代体系中存在单一异构体形式,而单取代体系中则不存在。红外光谱电化学表明,相对于单取代类似物,二取代体系中与酚氧化相关的双质子转移过程发生在较低的氧化还原电位下。计算研究支持了这些发现,并表明二取代体系通过形成分叉氢键来稳定氧化的双质子转移产物。在多个PCET的背景下考虑苯并咪唑杂环的质子转移性质,将改进由苯并咪唑串联单元构建的下一代新型仿生结构,从而实现纳米级长度的质子转移。