Fagan Abigail M, Jeffries William R, Knappenberger Kenneth L, Schaak Raymond E
ACS Nano. 2021 Jan 26;15(1):1378-1387. doi: 10.1021/acsnano.0c08661. Epub 2020 Dec 18.
Gold nanoparticles are well-known to exhibit size-dependent properties that are responsible for their unique catalytic, optical, and electronic applications. However, electron-phonon coupling, which is important for photocatalysis and light harvesting, is one of the rare properties of gold that is size-independent above a threshold value, , for nanospheres larger than approximately 5 nm in diameter. Here, we show that when interfaced to a comparably sized Pt nanoparticle, the electron-phonon coupling constant of the hybrid material depends on the diameter of the Au domain. This is important because the electron-phonon coupling constant describes the efficiency by which hot electrons are converted to local heat by the primary electron-phonon scattering thermalization channel. We begin by synthesizing a library of Au-Pt hybrid nanoparticle heterodimers by growing size-tunable Au nanoparticles on Pt nanoparticle seeds. By systematically varying reagent concentration and reaction time, the Au domain diameter of the Au-Pt hybrid nanoparticle heterodimers can be tuned between 4.4 and 16 nm while the size of the Pt domain remains constant. Calibration curves allow us to dial in precise Au domain sizes, and microscopic analysis of the Au-Pt heterodimers provides insights into how they grow and how their morphologies evolve. Femtosecond time-resolved transient absorption spectroscopy reveals that for Au-Pt heterodimers having Au domain diameters of 8.7 to 14 nm, the electron-phonon coupling constant decreases by more than 80%, which is not observed for comparably sized Au nanoparticles. Interfacing smaller Au domains with Pt nanoparticle surfaces causes an increase in the density of states near the Fermi level of Au, which results in accelerated thermalization times through an increased number of electron-phonon interactions. The combination of precision hybrid nanoparticle synthesis and size-dependent electron-phonon coupling may be important for designing composite metals for photocatalytic and light-harvesting applications and for engineering different functions into established materials.
众所周知,金纳米颗粒具有尺寸依赖性特性,这使其在催化、光学和电子等独特应用中发挥作用。然而,电子 - 声子耦合对于光催化和光捕获很重要,它是金的罕见特性之一,对于直径大于约5 nm的纳米球,在阈值以上与尺寸无关。在这里,我们表明,当与尺寸相当的铂纳米颗粒结合时,混合材料的电子 - 声子耦合常数取决于金域的直径。这很重要,因为电子 - 声子耦合常数描述了热电子通过主要的电子 - 声子散射热化通道转化为局部热的效率。我们首先通过在铂纳米颗粒种子上生长尺寸可调的金纳米颗粒来合成一系列金 - 铂混合纳米颗粒异二聚体。通过系统地改变试剂浓度和反应时间,金 - 铂混合纳米颗粒异二聚体的金域直径可以在4.4至16 nm之间调节,而铂域的尺寸保持不变。校准曲线使我们能够精确确定金域尺寸,对金 - 铂异二聚体的微观分析提供了它们如何生长以及形态如何演变的见解。飞秒时间分辨瞬态吸收光谱表明,对于金域直径为8.7至14 nm的金 - 铂异二聚体,电子 - 声子耦合常数下降超过80%,而对于尺寸相当的金纳米颗粒则未观察到这种情况。较小的金域与铂纳米颗粒表面结合会导致金的费米能级附近的态密度增加,这通过增加电子 - 声子相互作用的数量导致热化时间加快。精确的混合纳米颗粒合成与尺寸依赖性电子 - 声子耦合相结合,对于设计用于光催化和光捕获应用的复合金属以及将不同功能引入现有材料可能很重要。