Suppr超能文献

高效的等离子体介导的能量汇聚至金@铂核壳纳米晶体表面

Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.

作者信息

Engelbrekt Christian, Crampton Kevin T, Fishman Dmitry A, Law Matt, Apkarian Vartkess Ara

机构信息

Department of Chemistry, University of California Irvine, Irvine, California 92697, United States.

Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.

出版信息

ACS Nano. 2020 Apr 28;14(4):5061-5074. doi: 10.1021/acsnano.0c01653. Epub 2020 Mar 24.

Abstract

The structure and ultrafast photodynamics of ∼8 nm Au@Pt core-shell nanocrystals with ultrathin (<3 atomic layers) Pt-Au alloy shells are investigated to show that they meet the design principles for efficient bimetallic plasmonic photocatalysis. Photoelectron spectra recorded at two different photon energies are used to determine the radial concentration profile of the Pt-Au shell and the electron density near the Fermi energy, which play a key role in plasmon damping and electronic and thermal conductivity. Transient absorption measurements track the flow of energy from the plasmonic core to the electronic manifold of the Pt shell and back to the lattice of the core in the form of heat. We show that strong coupling to the high density of Pt(d) electrons at the Fermi level leads to accelerated dephasing of the Au plasmon on the femtosecond time scale, electron-electron energy transfer from Au(sp) core electrons to Pt(d) shell electrons on the sub-picosecond time scale, and enhanced thermal resistance on the 50 ps time scale. Electron-electron scattering efficiently funnels hot carriers into the ultrathin catalytically active shell at the nanocrystal surface, making them available to drive chemical reactions before losing energy to the lattice via electron-phonon scattering on the 2 ps time scale. The combination of strong broadband light absorption, enhanced electromagnetic fields at the catalytic metal sites, and efficient delivery of hot carriers to the catalyst surface makes core-shell nanocrystals with plasmonic metal cores and ultrathin catalytic metal shells promising nanostructures for the realization of high-efficiency plasmonic catalysts.

摘要

研究了具有超薄(<3个原子层)Pt-Au合金壳层的约8纳米Au@Pt核壳纳米晶体的结构和超快光动力学,结果表明它们符合高效双金属等离子体光催化的设计原则。在两种不同光子能量下记录的光电子能谱用于确定Pt-Au壳层的径向浓度分布以及费米能级附近的电子密度,这在等离子体阻尼以及电子和热导率方面起着关键作用。瞬态吸收测量追踪了能量从等离子体核流向Pt壳层的电子能态并以热的形式回到核晶格的过程。我们表明,在飞秒时间尺度上,与费米能级处高密度的Pt(d)电子的强耦合导致Au等离子体的退相加速,在亚皮秒时间尺度上发生从Au(sp)核电子到Pt(d)壳层电子的电子-电子能量转移,以及在50皮秒时间尺度上热阻增强。电子-电子散射有效地将热载流子导入纳米晶体表面超薄的催化活性壳层,使它们能够在通过2皮秒时间尺度上的电子-声子散射将能量损失给晶格之前驱动化学反应。具有等离子体金属核和超薄催化金属壳层的核壳纳米晶体,其强宽带光吸收、催化金属位点处增强的电磁场以及热载流子向催化剂表面的高效传递相结合,使其成为实现高效等离子体催化剂的有前景的纳米结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验