Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, Australia.
J Med Internet Res. 2020 Dec 18;22(12):e19127. doi: 10.2196/19127.
Chatbots are applications that can conduct natural language conversations with users. In the medical field, chatbots have been developed and used to serve different purposes. They provide patients with timely information that can be critical in some scenarios, such as access to mental health resources. Since the development of the first chatbot, ELIZA, in the late 1960s, much effort has followed to produce chatbots for various health purposes developed in different ways.
This study aimed to explore the technical aspects and development methodologies associated with chatbots used in the medical field to explain the best methods of development and support chatbot development researchers on their future work.
We searched for relevant articles in 8 literature databases (IEEE, ACM, Springer, ScienceDirect, Embase, MEDLINE, PsycINFO, and Google Scholar). We also performed forward and backward reference checking of the selected articles. Study selection was performed by one reviewer, and 50% of the selected studies were randomly checked by a second reviewer. A narrative approach was used for result synthesis. Chatbots were classified based on the different technical aspects of their development. The main chatbot components were identified in addition to the different techniques for implementing each module.
The original search returned 2481 publications, of which we identified 45 studies that matched our inclusion and exclusion criteria. The most common language of communication between users and chatbots was English (n=23). We identified 4 main modules: text understanding module, dialog management module, database layer, and text generation module. The most common technique for developing text understanding and dialogue management is the pattern matching method (n=18 and n=25, respectively). The most common text generation is fixed output (n=36). Very few studies relied on generating original output. Most studies kept a medical knowledge base to be used by the chatbot for different purposes throughout the conversations. A few studies kept conversation scripts and collected user data and previous conversations.
Many chatbots have been developed for medical use, at an increasing rate. There is a recent, apparent shift in adopting machine learning-based approaches for developing chatbot systems. Further research can be conducted to link clinical outcomes to different chatbot development techniques and technical characteristics.
聊天机器人是一种可以与用户进行自然语言对话的应用程序。在医学领域,已经开发并使用了聊天机器人来服务于不同的目的。它们为患者提供了在某些情况下至关重要的及时信息,例如获得心理健康资源。自 20 世纪 60 年代末开发出第一个聊天机器人 ELIZA 以来,人们一直致力于开发用于各种健康目的的聊天机器人,并采用不同的方法进行开发。
本研究旨在探讨与用于医学领域的聊天机器人相关的技术方面和开发方法,以解释最佳的开发方法,并为聊天机器人开发研究人员提供支持,以帮助他们开展未来的工作。
我们在 8 个文献数据库(IEEE、ACM、Springer、ScienceDirect、Embase、MEDLINE、PsycINFO 和 Google Scholar)中搜索了相关文章。我们还对所选文章进行了正向和反向参考文献检查。由一名评审员进行研究选择,然后由第二名评审员随机检查所选研究的 50%。使用叙述方法进行结果综合。根据开发的不同技术方面对聊天机器人进行分类。除了实现每个模块的不同技术外,还确定了主要的聊天机器人组件。
原始搜索返回了 2481 篇出版物,其中我们确定了 45 篇符合我们纳入和排除标准的研究。用户和聊天机器人之间最常用的交流语言是英语(n=23)。我们确定了 4 个主要模块:文本理解模块、对话管理模块、数据库层和文本生成模块。用于开发文本理解和对话管理的最常见技术是模式匹配方法(n=18 和 n=25)。最常用的文本生成方法是固定输出(n=36)。很少有研究依赖于生成原始输出。大多数研究都保留了一个医疗知识库,以便在整个对话中供聊天机器人用于不同目的。一些研究保留了对话脚本并收集用户数据和以前的对话。
已经开发了许多用于医疗用途的聊天机器人,并且数量在不断增加。最近,采用基于机器学习的方法开发聊天机器人系统的趋势明显。可以进行进一步的研究,将临床结果与不同的聊天机器人开发技术和技术特征联系起来。