Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain.
Chem Rev. 2021 Feb 10;121(3):1425-1462. doi: 10.1021/acs.chemrev.0c00692. Epub 2020 Dec 18.
The spectrally narrow, long-lived luminescence of lanthanide ions makes optical nanomaterials based on these elements uniquely attractive from both a fundamental and applicative standpoint. A highly coveted class of such nanomaterials is represented by colloidal lanthanide-doped semiconductor nanocrystals (LnSNCs). Therein, upon proper design, the poor light absorption intrinsically featured by lanthanides is compensated by the semiconductor moiety, which harvests the optical energy and funnel it to the luminescent metal center. Although a great deal of experimental effort has been invested to produce efficient nanomaterials of that sort, relatively modest results have been obtained thus far. As of late, halide perovskite nanocrystals have surged as materials of choice for doping lanthanides, but they have non-negligible shortcomings in terms of chemical stability, toxicity, and light absorption range. The limited gamut of currently available colloidal LnSNCs is unfortunate, given the tremendous technological impact that these nanomaterials could have in fields like biomedicine and optoelectronics. In this review, we provide an overview of the field of colloidal LnSNCs, while distilling the lessons learnt in terms of material design. The result is a compendium of key aspects to consider when devising and synthesizing this class of nanomaterials, with a keen eye on the foreseeable technological scenarios where they are poised to become front runners.
基于镧系元素的光学纳米材料具有光谱窄、寿命长的发光特性,无论从基础研究还是实际应用的角度来看,都具有独特的吸引力。此类纳米材料中,备受关注的一类是胶体镧系掺杂半导体纳米晶体(LnSNCs)。在适当的设计中,半导体部分弥补了镧系元素固有的光吸收不良的问题,它吸收光学能量并将其传递到发光金属中心。尽管已经投入了大量的实验努力来生产高效的此类纳米材料,但迄今为止,所取得的成果相对有限。最近,卤化物钙钛矿纳米晶体已成为掺杂镧系元素的首选材料,但它们在化学稳定性、毒性和光吸收范围方面存在不可忽视的缺点。鉴于这些纳米材料在生物医学和光电子学等领域可能产生的巨大技术影响,目前可获得的胶体 LnSNC 种类有限,这令人遗憾。在本综述中,我们概述了胶体 LnSNC 领域,并总结了材料设计方面的经验教训。其结果是在设计和合成此类纳米材料时需要考虑的关键方面的纲要,并密切关注它们有望成为领先者的可预见的技术场景。