Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
J Am Chem Soc. 2020 Dec 30;142(52):21786-21798. doi: 10.1021/jacs.0c10054. Epub 2020 Dec 18.
A variety of post-translational modifications (PTMs) are believed to regulate the behavior and function of α-synuclein (αS), an intrinsically disordered protein that mediates synaptic vesicle trafficking. Fibrils of αS are implicated in neurodegenerative disorders such as Parkinson's disease. In this study, we used chemical synthesis and biophysical techniques to characterize the neuroprotective effects of glutamate arginylation, a hitherto little characterized PTM in αS. We developed semisynthetic routes combining peptide synthesis, unnatural amino acid mutagenesis, and native chemical ligation (NCL) to site-specifically introduce the PTM of interest along with fluorescent probes into αS. We synthesized the arginylated glutamate as a protected amino acid, as well as a novel ligation handle for NCL, in order to generate full-length αS modified at various individual sites or a combination of sites. We assayed the lipid-vesicle binding affinities of arginylated αS using fluorescence correlation spectroscopy (FCS) and found that arginylated αS has the same vesicle affinity compared to control protein, suggesting that this PTM does not alter the native function of αS. On the other hand, we studied the aggregation kinetics of modified αS and found that arginylation at E83, but not E46, slows aggregation and decreases the percentage incorporation of monomer into fibrils in a dose-dependent manner. Arginylation at both sites also resulted in deceleration of fibril formation. Our study represents the first synthetic strategy for incorporating glutamate arginylation into proteins and provides insight into the neuroprotective effect of this unusual PTM.
多种翻译后修饰(PTMs)被认为可以调节α-突触核蛋白(αS)的行为和功能,αS 是一种介导突触小泡运输的固有无序蛋白。αS 的纤维与神经退行性疾病如帕金森病有关。在这项研究中,我们使用化学合成和生物物理技术来表征谷氨酸精氨酸化的神经保护作用,这是 αS 中一种迄今为止描述较少的翻译后修饰。我们开发了半合成途径,结合肽合成、非天然氨基酸突变和天然化学连接(NCL),将感兴趣的翻译后修饰以及荧光探针特异性地引入到αS 中。我们合成了精氨酸化谷氨酸作为保护氨基酸,以及用于 NCL 的新连接手柄,以便在各种单个位点或组合位点上对全长αS 进行修饰。我们使用荧光相关光谱(FCS)测定了精氨酸化αS 的脂质-囊泡结合亲和力,发现精氨酸化αS 与对照蛋白具有相同的囊泡亲和力,这表明该翻译后修饰不会改变αS 的天然功能。另一方面,我们研究了修饰的αS 的聚集动力学,发现 E83 处的精氨酸化,但不是 E46 处的精氨酸化,以剂量依赖的方式减缓聚集并降低单体掺入纤维的百分比。两个位点的精氨酸化也导致纤维形成的减速。我们的研究代表了将谷氨酸精氨酸化掺入蛋白质的第一种合成策略,并为这种不寻常的翻译后修饰的神经保护作用提供了深入了解。