Murphy Colin J, Ardy Nugroho Ferry Anggoro, Härelind Hanna, Hellberg Lars, Langhammer Christoph
Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Nano Lett. 2021 Jan 13;21(1):353-359. doi: 10.1021/acs.nanolett.0c03733. Epub 2020 Dec 18.
Temperature-programmed desorption (TPD) allows for the determination of the bonding strength and coverage of molecular mono- or multilayers on a surface and is widely used in surface science. In its traditional form using a mass spectrometric readout, this information is derived by analysis of resulting desorption peaks. This is problematic because the mass spectrometer signal not only originates from the sample surface but also potentially from other surfaces in the measurement chamber. As a complementary alternative, we introduce plasmonic TPD, which measures the surface coverage of molecular species adsorbed on metal nanoparticles at ultrahigh vacuum conditions. Using the examples of methanol and benzene on Au nanoparticle surfaces, the method can resolve all relevant features in the submonolayer and multilayer regimes. Furthermore, it enables the study of two types of nanoparticles simultaneously, which is challenging in a traditional TPD experiment, as we demonstrate specifically for Au and Ag.
程序升温脱附(TPD)可用于测定分子单层或多层在表面上的结合强度和覆盖度,在表面科学中被广泛应用。在其使用质谱读出的传统形式中,该信息是通过对所得脱附峰的分析得出的。这存在问题,因为质谱仪信号不仅源于样品表面,还可能源于测量室中的其他表面。作为一种补充替代方法,我们引入了等离子体TPD,它可在超高真空条件下测量吸附在金属纳米颗粒上的分子物种的表面覆盖度。以金纳米颗粒表面上的甲醇和苯为例,该方法能够解析亚单层和多层区域内的所有相关特征。此外,它能够同时研究两种类型的纳米颗粒,正如我们专门针对金和银所展示的那样,这在传统的TPD实验中具有挑战性。