Fourth Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, 70550 Stuttgart, Germany.
Faculty of Sciences, Division of Physics and Astronomy, VU University , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
Nano Lett. 2015 Dec 9;15(12):7949-55. doi: 10.1021/acs.nanolett.5b03029. Epub 2015 Aug 31.
Investigating new materials plays an important role for advancing the field of nanoplasmonics. In this work, we fabricate nanodisks from magnesium and demonstrate tuning of their plasmon resonance throughout the whole visible wavelength range by changing the disk diameter. Furthermore, we employ a catalytic palladium cap layer to transform the metallic Mg particles into dielectric MgH2 particles when exposed to hydrogen gas. We prove that this transition can be reversed in the presence of oxygen. This yields plasmonic nanostructures with an extinction spectrum that can be repeatedly switched on or off or kept at any intermediate state, offering new perspectives for active plasmonic metamaterials.
研究新材料对于推动纳米等离子体学领域的发展起着重要作用。在这项工作中,我们制备了镁纳米盘,并通过改变盘的直径在整个可见光波长范围内调谐其等离子体共振。此外,我们采用了一层催化钯帽层,当镁纳米颗粒暴露在氢气中时,将其转化为介电 MgH2 颗粒。我们证明,在氧气存在的情况下,这种转变是可以逆转的。这就得到了具有可以反复开启或关闭或保持在任何中间状态的消光光谱的等离子体纳米结构,为活性等离子体超材料提供了新的视角。