Ohto Tatsuhiko, Tashiro Aya, Seo Takuji, Kawaguchi Nana, Numai Yuichi, Tokumoto Junpei, Yamaguchi Soichiro, Yamada Ryo, Tada Hirokazu, Aso Yoshio, Ie Yutaka
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Small. 2021 Jan;17(3):e2006709. doi: 10.1002/smll.202006709. Epub 2020 Dec 18.
Direct hybridization between the π-orbital of a conjugated molecule and metal electrodes is recognized as a new anchoring strategy to enhance the electrical conductance of single-molecule junctions. The anchor is expected to maintain direct hybridization between the conjugated molecule and the metal electrodes, and control the orientation of the molecule against the metal electrodes. However, fulfilling both requirements is difficult because multipodal anchors aiming at a robust contact with the electrodes often break the π-conjugation, thereby resulting in an inefficient carrier transport. Herein, a new tripodal anchor framework-a 7,7-diphenyl-7H-benzo[6,7]indeno[1,2-b]thiophene (PBIT) derivative-is developed. In this framework, π-conjugation is maintained in the molecular junction, and the tripodal structure makes the molecule stand upright on the metal electrode. Molecular conductance is measured by the break junction technique. A vector-based classification and first-principles transport calculations determine the single-molecule conductance of the tripodal-anchoring structure. The conductance of the PBIT-based molecule is higher than that of the tripodal anchor having sp carbon atoms in the carrier transport pathway. These results demonstrate that extending the π-conjugation to the tripodal leg is an effective strategy for enhancing the conductivities of single-molecule junctions.
共轭分子的π轨道与金属电极之间的直接杂化被认为是一种增强单分子结电导率的新锚定策略。这种锚定有望维持共轭分子与金属电极之间的直接杂化,并控制分子相对于金属电极的取向。然而,要同时满足这两个要求很困难,因为旨在与电极实现稳固接触的多足锚定常常会破坏π共轭,从而导致载流子传输效率低下。在此,开发了一种新的三足锚定框架——一种7,7 - 二苯基 - 7H - 苯并[6,7]茚并[1,2 - b]噻吩(PBIT)衍生物。在这个框架中,分子结中的π共轭得以维持,并且三足结构使分子直立在金属电极上。通过断结技术测量分子电导。基于矢量的分类和第一性原理输运计算确定了三足锚定结构的单分子电导。基于PBIT的分子的电导高于在载流子传输路径中具有sp碳原子的三足锚定的电导。这些结果表明,将π共轭扩展到三足支腿是提高单分子结电导率的有效策略。