Suppr超能文献

聚嘌呤反向 Hoogsteen 发夹的核酸治疗药物。

Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins.

机构信息

Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain.

Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain.

出版信息

Biochem Pharmacol. 2021 Jul;189:114371. doi: 10.1016/j.bcp.2020.114371. Epub 2020 Dec 16.

Abstract

PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRPα/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.

摘要

多聚嘌呤反向 Hoogsteen 发夹(PPRHs)是由分子内反向 Hoogsteen 键形成的 DNA 发夹,可通过 Watson-Crick 键与 dsDNA 中的多嘧啶延伸结合,从而形成三链体并置换 DNA 复合物的第四链。PPRHs 最初被描述为体外用于 DHFR、端粒酶和生存素基因的基因沉默工具。然后,使用前列腺癌细胞(PC3)的异种移植模型体内确定了针对生存素基因的 PPRHs 的作用。从那时起,PPRHs 抑制基因表达的能力已在其他涉及癌症的基因(BCL-2、mTOR、拓扑异构酶、C-MYC 和 MDM2)、免疫疗法(SIRPα/CD47 和 PD-1/PD-L1 串联)或复制应激(WEE1 和 CHK1)中进行了探索。此外,PPRHs 能够靶向 G-四联体基序的互补链作为 TYMS 基因的调节元件。PPRHs 还有可能纠正 DNA 中的点突变,如在具有 dhfr 或 aprt 基因座突变的 CHO 细胞系的两个集合中所示。最后,基于 PPRHs 形成三链体的能力,它们已被整合到生物传感器中,用于测定癌症中 PAX-5 的 DNA 甲基化状态,并检测 mtLSU rRNA 以诊断肺孢子菌。值得注意的是,PPRHs 在体外具有高稳定性,并且不会引起免疫原性、肝毒性或肾毒性。总体而言,PPRHs 构成了一种具有多种生物医学应用的新型经济生物技术工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验