Ciudad Carlos J, Valiuska Simonas, Rojas José Manuel, Nogales-Altozano Pablo, Aviñó Anna, Eritja Ramón, Chillón Miguel, Sevilla Noemí, Noé Verónique
Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain.
Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain.
J Biol Chem. 2024 Nov;300(11):107884. doi: 10.1016/j.jbc.2024.107884. Epub 2024 Oct 11.
Although the COVID-19 pandemic was declared no longer a global emergency by the World Health Organization in May 2023, SARS-CoV-2 is still infecting people across the world. Many therapeutic oligonucleotides such as ASOs, siRNAs, or CRISPR-based systems emerged as promising antiviral strategies for the treatment of SARS-CoV-2. In this work, we explored the inhibitory potential on SARS-CoV-2 replication of Polypurine Reverse Hoogsteen Hairpins (PPRHs), CC1-PPRH, and CC3-PPRH, targeting specific polypyrimidine sequences within the replicase and Spike regions, respectively, and previously validated for COVID-19 diagnosis. Both PPRHs are bound to their target sequences in the viral genome with high affinity in the order of nM. In vitro, both PPRHs reduced viral replication by more than 92% when transfected into VERO-E6 cells 24 h prior to infection with SARS-CoV-2. In vivo intranasal administration of CC1-PPRH in K18-hACE2 mice expressing the human ACE receptor protected all the animals from SARS-CoV-2 infection. The properties of PPRHs position them as promising candidates for the development of novel therapeutics against SARS-CoV-2 and other viral infections.
尽管世界卫生组织于2023年5月宣布新冠疫情不再构成全球紧急情况,但严重急性呼吸综合征冠状病毒2(SARS-CoV-2)仍在全球感染人群。许多治疗性寡核苷酸,如反义寡核苷酸(ASO)、小干扰RNA(siRNA)或基于CRISPR的系统,已成为治疗SARS-CoV-2的有前景的抗病毒策略。在这项研究中,我们探索了多嘌呤反向Hoogsteen发夹(PPRH)、CC1-PPRH和CC3-PPRH对SARS-CoV-2复制的抑制潜力,它们分别靶向复制酶和刺突区域内的特定嘧啶序列,并且先前已被验证可用于新冠诊断。两种PPRH均以纳摩尔级别的高亲和力与病毒基因组中的靶序列结合。在体外,在用SARS-CoV-2感染前24小时将两种PPRH转染到非洲绿猴肾细胞(VERO-E6)中时,它们均使病毒复制减少了92%以上。在体内,对表达人血管紧张素转换酶(ACE)受体的K18-hACE2小鼠进行CC1-PPRH鼻内给药,可保护所有动物免受SARS-CoV-2感染。PPRH的特性使其成为开发针对SARS-CoV-2和其他病毒感染的新型疗法的有前景的候选物。