Suppr超能文献

内皮细胞中的精氨酸循环受 HSP90 和泛素蛋白酶体系统的调节。

Arginine recycling in endothelial cells is regulated BY HSP90 and the ubiquitin proteasome system.

机构信息

Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA.

Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.

出版信息

Nitric Oxide. 2021 Mar 1;108:12-19. doi: 10.1016/j.niox.2020.12.003. Epub 2020 Dec 15.

Abstract

Despite the saturating concentrations of intracellular l-arginine, nitric oxide (NO) production in endothelial cells (EC) can be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox" led to the discovery of an arginine recycling pathway in which l-citrulline is recycled to l-arginine by utilizing two important urea cycle enzymes argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Prior work has shown that ASL is present in a NO synthetic complex containing hsp90 and endothelial NO synthase (eNOS). However, it is unclear whether hsp90 forms functional complexes with ASS and ASL and if it is involved regulating their activity. Thus, elucidating the role of hsp90 in the arginine recycling pathway was the goal of this study. Our data indicate that both ASS and ASL are chaperoned by hsp90. Inhibiting hsp90 activity with geldanamycin (GA), decreased the activity of both ASS and ASL and decreased cellular l-arginine levels in bovine aortic endothelial cells (BAEC). hsp90 inhibition led to a time-dependent decrease in ASS and ASL protein, despite no changes in mRNA levels. We further linked this protein loss to a proteasome dependent degradation of ASS and ASL via the E3 ubiquitin ligase, C-terminus of Hsc70-interacting protein (CHIP) and the heat shock protein, hsp70. Transient over-expression of CHIP was sufficient to stimulate ASS and ASL degradation while the over-expression of CHIP mutant proteins identified both TPR- and U-box-domain as essential for ASS and ASL degradation. This study provides a novel insight into the molecular regulation l-arginine recycling in EC and implicates the proteasome pathway as a possible therapeutic target to stimulate NO signaling.

摘要

尽管细胞内 l-精氨酸的浓度饱和,但内皮细胞 (EC) 中的一氧化氮 (NO) 产生可以被外源性精氨酸刺激。这种现象被称为“精氨酸悖论”,导致了一种精氨酸循环途径的发现,其中 l-瓜氨酸通过利用两种重要的尿素循环酶精氨酸合成酶 (ASS) 和精氨酸琥珀酸裂解酶 (ASL) 循环回 l-精氨酸。先前的工作表明,ASL 存在于包含热休克蛋白 90 (hsp90) 和内皮型一氧化氮合酶 (eNOS) 的 NO 合成复合物中。然而,hsp90 是否与 ASS 和 ASL 形成功能复合物,以及是否参与调节它们的活性尚不清楚。因此,阐明 hsp90 在精氨酸循环途径中的作用是本研究的目标。我们的数据表明,ASS 和 ASL 都被 hsp90 伴侣。用格尔德霉素 (GA) 抑制 hsp90 活性,降低了 ASS 和 ASL 的活性,并降低了牛主动脉内皮细胞 (BAEC) 中的细胞 l-精氨酸水平。hsp90 抑制导致 ASS 和 ASL 蛋白随时间减少,尽管 mRNA 水平没有变化。我们进一步将这种蛋白丢失与蛋白酶体依赖的降解联系起来,通过 E3 泛素连接酶 C 端热休克蛋白 70 相互作用蛋白 (CHIP) 和热休克蛋白 hsp70 降解 ASS 和 ASL。CHIP 的瞬时过表达足以刺激 ASS 和 ASL 降解,而过表达 CHIP 的突变蛋白鉴定出 TPR-和 U 盒结构域对于 ASS 和 ASL 降解是必需的。这项研究为 EC 中 l-精氨酸循环的分子调控提供了新的见解,并暗示蛋白酶体途径可能是刺激 NO 信号的潜在治疗靶点。

相似文献

本文引用的文献

1
Nitric Oxide and Endothelial Dysfunction.一氧化氮与内皮功能障碍。
Crit Care Clin. 2020 Apr;36(2):307-321. doi: 10.1016/j.ccc.2019.12.009.
6
The Nitric Oxide Pathway in Pulmonary Vascular Disease.肺血管疾病中的一氧化氮途径
Am J Cardiol. 2017 Oct 15;120(8S):S71-S79. doi: 10.1016/j.amjcard.2017.06.012.
7
Arginine Metabolism Revisited.精氨酸代谢再探讨。
J Nutr. 2016 Dec;146(12):2579S-2586S. doi: 10.3945/jn.115.226621. Epub 2016 Nov 9.
9
Extrarenal citrulline disposal in mice with impaired renal function.肾功能障碍小鼠的肾脏外瓜氨酸清除。
Am J Physiol Renal Physiol. 2014 Sep 15;307(6):F660-5. doi: 10.1152/ajprenal.00289.2014. Epub 2014 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验