CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Environmental Engineering Department, Middle East Technical University, Ankara, 06800, Turkey.
CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Environmental Engineering Department, Middle East Technical University, Ankara, 06800, Turkey.
Environ Pollut. 2021 Feb 1;270:116077. doi: 10.1016/j.envpol.2020.116077. Epub 2020 Dec 1.
Titanium dioxide nanoparticles (TiONPs) application in variety of commercial products would likely release these NPs into the environment. The interaction of TiONPs with terrestrial plants upon uptake can disturb plants functional traits and can also transfer to the food chain members. In this study, we investigated the impact of TiONPs on wheat (Triticum aestivum L.) plants functional traits, primary macronutrients assimilation, and change in the profile of bio-macromolecule. Moreover, the mechanism of biochar-TiONPs interaction, immobilization, and tissue accumulation to cell translocation of NPs in plants was also explored. The results indicated that the contents of Ti in wheat tissues was reduced about 3-fold and the Ti transfer rate (per day) was reduced about 2 fold at the 1000 mg L exposure level of TiONPs in biochar amended exposure medium. Transmission electron microscopy (TEM) with elemental mapping confirmed that Ti concentrated in plant tissues in nano-form. The interactive effect of TiONPs + biochar amendment on photosynthesis related and gas exchange traits was observed at relatively low TiONPs exposure level (200 mg L), which induced the positive impact on wheat plants proliferation. TiONPs alone exposure to wheat also modified the plant's bio-macromolecules profile with the reduction in the assimilation of primary macronutrients, which could affect the food crop nutritional value and quality. X-ray photoelectron spectroscopy (XPS) chemical analysis of biochar + TiONPs showed an additional peak, which indicated the binding interaction of NPs with biochar. Moreover, Fourier-transform infrared (FTIR) spectroscopy confirmed that the biochar carboxyl group is the main functionality involved in the bonding process with TiONPs. These findings will help for a mechanistic understanding of the role of biochar in the reduction of NPs bioavailability to primary producers of the terrestrial environment.
二氧化钛纳米粒子(TiONPs)在各种商业产品中的应用可能会将这些纳米粒子释放到环境中。TiONPs 被植物吸收后与陆生植物相互作用,可能会干扰植物的功能特性,并可能转移到食物链成员中。在这项研究中,我们研究了 TiONPs 对小麦(Triticum aestivum L.)植物功能特性、主要大量营养素吸收以及生物大分子组成变化的影响。此外,还探索了生物炭-TiONPs 相互作用、固定化以及纳米颗粒在植物中的细胞迁移和组织积累的机制。结果表明,在添加生物炭的暴露介质中 TiONPs 的暴露水平为 1000 mg/L 时,小麦组织中的 Ti 含量减少了约 3 倍,Ti 的转移率(每天)减少了约 2 倍。透射电子显微镜(TEM)与元素映射证实,Ti 以纳米形式集中在植物组织中。在相对较低的 TiONPs 暴露水平(200 mg/L)下,观察到 TiONPs+生物炭添加对光合作用相关和气体交换特性的交互作用,这对小麦植物的增殖产生了积极影响。TiONPs 单独暴露于小麦也会改变植物的生物大分子组成,减少主要大量营养素的吸收,这可能会影响粮食作物的营养价值和质量。X 射线光电子能谱(XPS)对生物炭+TiONPs 的化学分析表明出现了一个额外的峰,这表明 NPs 与生物炭之间存在结合相互作用。此外,傅里叶变换红外(FTIR)光谱证实生物炭的羧基基团是与 TiONPs 结合过程中涉及的主要官能团。这些发现将有助于深入了解生物炭在降低陆地环境中初级生产者对纳米粒子生物利用度方面的作用机制。