Kubakaddi S S
Department of Physics, K L E Technological University, Hubballi-580031, Karnataka, India.
J Phys Condens Matter. 2021 Mar 17;33(11):115704. doi: 10.1088/1361-648X/abd526.
We have carried out a theoretical investigation of hot electron power loss P, involving electron-acoustic phonon interaction, as a function of twist angle θ, electron temperature T and electron density n in twisted bilayer graphene. It is found that as θ decreases closer to magic angle θ , P enhances strongly and θ acts as an important tunable parameter, apart from T and n . In the range of T = 1-50 K, this enhancement is ∼250-450 times the P in monolayer graphene (MLG), which is manifestation of the great suppression of Fermi velocity v of electrons in moiré flat band. As θ increases away from θ , the impact of θ on P decreases, tending to that of MLG at θ ∼ 3°. In the Bloch-Grüneisen (BG) regime, P ∼ T , n and v . In the higher temperature region (∼10-50 K), P ∼ T , with δ ∼ 2.0, and the behavior is still super linear in T , unlike the phonon limited linear-in-T (lattice temperature) resistivity ρ . P is weakly, decreasing (increasing) with increasing n at lower (higher) T , as found in MLG. The energy relaxation time τ is also discussed as a function of θ and T . Expressing the power loss P = F (T ) - F (T), in the BG regime, we have obtained a simple and useful relation F (T)μ (T) = (ev /2) i.e. F (T) = (n e v /2)ρ , where μ is the acoustic phonon limited mobility and v is the acoustic phonon velocity. The ρ estimated from this relation using our calculated F (T) is nearly agreeing with the ρ of Wu et al (2019 Phys. Rev. B 99 165112).
我们对涉及电子 - 声子相互作用的热电子功率损耗(P)进行了理论研究,该功率损耗是扭曲双层石墨烯中扭曲角(\theta)、电子温度(T)和电子密度(n)的函数。研究发现,随着(\theta)减小至接近魔角(\theta_{m}),(P)急剧增强,并且除了(T)和(n)之外,(\theta)还充当一个重要的可调参数。在(T = 1 - 50)K范围内,这种增强是单层石墨烯(MLG)中(P)的约(250 - 450)倍,这是莫尔平带中电子费米速度(v_{F})受到极大抑制的表现。随着(\theta)远离(\theta_{m})增加,(\theta)对(P)的影响减小,在(\theta \sim 3^{\circ})时趋于单层石墨烯的情况。在布洛赫 - 格律恩森(BG)区域,(P \sim T^{5}),(n)和(v_{F})。在较高温度区域((\sim 10 - 50)K),(P \sim T^{\delta}),其中(\delta \sim 2.0),并且该行为在(T)中仍然是超线性的,这与声子限制的(T)(晶格温度)线性电阻率(\rho)不同。如在单层石墨烯中所发现的那样,在较低(较高)(T)下,(P)随(n)增加而微弱地减小(增加)。还讨论了能量弛豫时间(\tau_{E})作为(\theta)和(T)的函数。将功率损耗表示为(P = F(T_{h}) - F(T_{l})),在BG区域,我们得到了一个简单且有用的关系(F(T)\mu(T) = (\hbar v_{s} / 2)),即(F(T) = (n e^{2} v_{F} / 2)\rho_{s}),其中(\mu)是声子限制迁移率,(v_{s})是声子速度。使用我们计算得到的(F(T))从该关系估计的(\rho_{s})与Wu等人(2019年,《物理评论B》99 165112)的(\rho_{s})几乎一致。