Department of Physics, Columbia University New York, New York 10027, USA.
Phys Rev Lett. 2010 Dec 17;105(25):256805. doi: 10.1103/PhysRevLett.105.256805. Epub 2010 Dec 13.
We report on the temperature dependent electron transport in graphene at different carrier densities n. Employing an electrolytic gate, we demonstrate that n can be adjusted up to 4 × 10(14) cm(-2) for both electrons and holes. The measured sample resistivity ρ increases linearly with temperature T in the high temperature limit, indicating that a quasiclassical phonon distribution is responsible for the electron scattering. As T decreases, the resistivity decreases more rapidly following ρ(T) ∼ T(4). This low temperature behavior can be described by a Bloch-Grüneisen model taking into account the quantum distribution of the two-dimensional acoustic phonons in graphene. We map out the density dependence of the characteristic temperature Θ(BG) defining the crossover between the two distinct regimes, and show that, for all n, ρ(T) scales as a universal function of the normalized temperature T/Θ(BG).
我们报告了不同载流子密度 n 下石墨烯中温度相关的电子输运。通过使用电解门,我们证明电子和空穴的 n 可以调整到 4×10(14) cm(-2)。测量的样品电阻率 ρ 在高温极限下随温度 T 线性增加,表明准经典声子分布是电子散射的原因。随着 T 的降低,电阻率按照 ρ(T)∼T(4)更快速地降低。这种低温行为可以通过考虑在石墨烯中二维声子的量子分布的 Bloch-Grüneisen 模型来描述。我们绘制出了特征温度 Θ(BG)的密度依赖性,该温度定义了两个不同区域之间的交叉点,并表明,对于所有 n,ρ(T)作为归一化温度 T/Θ(BG)的通用函数进行缩放。
Phys Rev Lett. 2010-12-13
J Phys Condens Matter. 2012-4-19
J Phys Condens Matter. 2021-3-17
J Phys Condens Matter. 2015-4-29
J Phys Condens Matter. 2015-11-18
Angew Chem Int Ed Engl. 2018-4-16
J Phys Condens Matter. 2013-6-10
Nanophotonics. 2022-4-11
Nat Nanotechnol. 2025-1
Nat Commun. 2024-8-13
Proc Natl Acad Sci U S A. 2023-8-22