National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
Phys Med Biol. 2020 Jun 18;65(12):125013. doi: 10.1088/1361-6560/ab8e89.
We proposed a concept of whole gamma imaging (WGI) that utilizes all detectable gamma rays for imaging. An additional detector ring, which is used as the scatterer, is inserted in the field-of-view of a PET ring so that single gamma rays can be detected by the Compton imaging method. In particular, for the non-pure positron emitters which emit an additional gamma ray almost at the same time, triple gamma imaging will be enabled; localization on each line-of-response (LOR) is possible by using the Compton cone of the additional gamma ray. We developed a prototype to show a proof of the WGI concept. The diameters of scatterer ring and PET ring were set as 20 cm and 66 cm, respectively. For Compton imaging of the 662-keV gamma ray from a Cs point source, spatial resolution obtained by the list-mode OSEM algorithm was 4.4 mm FWHM at the 8 cm off-center position and 13.1 mm FWHM at the center position. For PET imaging of a Na point source, spatial resolution was about 2 mm FWHM at all positions. For the triple gamma imaging, 5.7 mm FWHM (center) and 4.8 mm FWHM (8 cm off-center) were obtained for the Na point source just by plotting the intersecting points between each LOR and each Compton cone of the 1275-keV gamma ray. No image reconstruction was applied. Scandium-44 was produced as a practical candidate of the non-pure positron emitters, and 6.6 mm FWHM (center) and 5.8 mm FWHM (8 cm off-center) were obtained in the same manner. This direct imaging approach which neither requires time-consuming event integration nor iterative image reconstruction may allow in vivo real-time tracking of a tiny amount of activity. Our initial results showed the feasibility of the WGI concept, which is a novel combination of PET and Compton imaging.
我们提出了一种全伽马成像(WGI)的概念,该概念利用所有可检测的伽马射线进行成像。在 PET 环的视场中插入一个附加的探测器环作为散射器,以便通过康普顿成像方法检测单个伽马射线。特别是对于发射额外伽马射线的非纯正电子发射体,将能够实现三伽马成像;通过使用额外伽马射线的康普顿圆锥,可以在每条线响应(LOR)上进行定位。我们开发了一个原型来展示 WGI 概念的可行性。散射器环和 PET 环的直径分别设置为 20 厘米和 66 厘米。对于来自 Cs 点源的 662keV 伽马射线的康普顿成像,使用列表模式 OSEM 算法获得的空间分辨率在 8 厘米离轴位置处为 4.4 毫米 FWHM,在中心位置处为 13.1 毫米 FWHM。对于 Na 点源的 PET 成像,在所有位置的空间分辨率约为 2 毫米 FWHM。对于三伽马成像,对于 Na 点源,只需绘制每条 LOR 与 1275keV 伽马射线的每个康普顿圆锥的交点,即可获得 5.7 毫米 FWHM(中心)和 4.8 毫米 FWHM(8 厘米离轴)。未进行图像重建。作为非纯正电子发射体的实际候选物,产生了钪-44,并以相同的方式获得了 6.6 毫米 FWHM(中心)和 5.8 毫米 FWHM(8 厘米离轴)。这种既不需要耗时的事件积分也不需要迭代图像重建的直接成像方法,可能允许对少量活动进行体内实时跟踪。我们的初步结果表明了 WGI 概念的可行性,这是 PET 和康普顿成像的新颖组合。