Suppr超能文献

基于集成机器学习预测甲状腺切除术后患者的预后。

Ensemble machine learning for the prediction of patient-level outcomes following thyroidectomy.

机构信息

Stanford-Surgery Policy Improvement Research and Education Center (S-SPIRE), Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States; Division of General Surgery, Palo Alto Veterans Affairs Health Care System, United States.

University of California, Berkeley, Division of Biostatistics, Berkeley, United States.

出版信息

Am J Surg. 2021 Aug;222(2):347-353. doi: 10.1016/j.amjsurg.2020.11.055. Epub 2020 Dec 3.

Abstract

BACKGROUND

Accurate prediction of thyroidectomy complications is necessary to inform treatment decisions. Ensemble machine learning provides one approach to improve prediction.

METHODS

We applied the Super Learner (SL) algorithm to the 2016-2018 thyroidectomy-specific NSQIP database to predict complications following thyroidectomy. Cross-validation was used to assess model discrimination and precision.

RESULTS

For the 17,987 patients undergoing thyroidectomy, rates of recurrent laryngeal nerve injury, post-operative hypocalcemia prior to discharge or within 30 days, and neck hematoma were 6.1%, 6.4%, 9.0%, and 1.8%, respectively. SL improved prediction of thyroidectomy-specific outcomes when compared with benchmark logistic regression approaches. For postoperative hypocalcemia prior to discharge, SL improved the cross-validated AUROC to 0.72 (95%CI 0.70-0.74) compared to 0.70 (95%CI 0.68-0.72; p < 0.001) when using a manually curated logistic regression algorithm.

CONCLUSION

Ensemble machine learning modestly improves prediction for thyroidectomy-specific outcomes. SL holds promise to provide more accurate patient-level risk prediction to inform treatment decisions.

摘要

背景

准确预测甲状腺切除术的并发症对于治疗决策至关重要。集成机器学习提供了一种改进预测的方法。

方法

我们应用 Super Learner (SL) 算法对 2016-2018 年甲状腺切除术特有的 NSQIP 数据库进行分析,以预测甲状腺切除术后的并发症。交叉验证用于评估模型的区分度和精度。

结果

在接受甲状腺切除术的 17987 名患者中,喉返神经损伤、术后出院前或 30 天内低钙血症、颈部血肿的发生率分别为 6.1%、6.4%、9.0%和 1.8%。与基准逻辑回归方法相比,SL 提高了甲状腺切除术特定结局的预测。对于出院前的术后低钙血症,与使用手动整理的逻辑回归算法时的 0.70(95%CI 0.68-0.72;p<0.001)相比,SL 将交叉验证的 AUROC 提高至 0.72(95%CI 0.70-0.74)(p<0.001)。

结论

集成机器学习适度提高了对甲状腺切除术特定结局的预测。SL 有望提供更准确的患者个体风险预测,以辅助治疗决策。

相似文献

10
Ambulatory thyroidectomy: a multistate study of revisits and complications.门诊甲状腺切除术:一项关于复诊和并发症的多州研究。
Otolaryngol Head Neck Surg. 2015 Jun;152(6):1017-23. doi: 10.1177/0194599815577603. Epub 2015 Mar 31.

本文引用的文献

1
Why Is Hyperparathyroidism Underdiagnosed and Undertreated in Older Adults?为什么老年人的甲状旁腺功能亢进症诊断不足且治疗不充分?
Clin Med Insights Endocrinol Diabetes. 2018 Dec 12;11:1179551418815916. doi: 10.1177/1179551418815916. eCollection 2018.
4
7
Preoperative assessment of the risk for multiple complications after surgery.术后多种并发症风险的术前评估。
Surgery. 2016 Aug;160(2):463-72. doi: 10.1016/j.surg.2016.04.013. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验