Stanford-Surgery Policy Improvement Research and Education Center (S-SPIRE), Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States; Division of General Surgery, Palo Alto Veterans Affairs Health Care System, United States.
University of California, Berkeley, Division of Biostatistics, Berkeley, United States.
Am J Surg. 2021 Aug;222(2):347-353. doi: 10.1016/j.amjsurg.2020.11.055. Epub 2020 Dec 3.
Accurate prediction of thyroidectomy complications is necessary to inform treatment decisions. Ensemble machine learning provides one approach to improve prediction.
We applied the Super Learner (SL) algorithm to the 2016-2018 thyroidectomy-specific NSQIP database to predict complications following thyroidectomy. Cross-validation was used to assess model discrimination and precision.
For the 17,987 patients undergoing thyroidectomy, rates of recurrent laryngeal nerve injury, post-operative hypocalcemia prior to discharge or within 30 days, and neck hematoma were 6.1%, 6.4%, 9.0%, and 1.8%, respectively. SL improved prediction of thyroidectomy-specific outcomes when compared with benchmark logistic regression approaches. For postoperative hypocalcemia prior to discharge, SL improved the cross-validated AUROC to 0.72 (95%CI 0.70-0.74) compared to 0.70 (95%CI 0.68-0.72; p < 0.001) when using a manually curated logistic regression algorithm.
Ensemble machine learning modestly improves prediction for thyroidectomy-specific outcomes. SL holds promise to provide more accurate patient-level risk prediction to inform treatment decisions.
准确预测甲状腺切除术的并发症对于治疗决策至关重要。集成机器学习提供了一种改进预测的方法。
我们应用 Super Learner (SL) 算法对 2016-2018 年甲状腺切除术特有的 NSQIP 数据库进行分析,以预测甲状腺切除术后的并发症。交叉验证用于评估模型的区分度和精度。
在接受甲状腺切除术的 17987 名患者中,喉返神经损伤、术后出院前或 30 天内低钙血症、颈部血肿的发生率分别为 6.1%、6.4%、9.0%和 1.8%。与基准逻辑回归方法相比,SL 提高了甲状腺切除术特定结局的预测。对于出院前的术后低钙血症,与使用手动整理的逻辑回归算法时的 0.70(95%CI 0.68-0.72;p<0.001)相比,SL 将交叉验证的 AUROC 提高至 0.72(95%CI 0.70-0.74)(p<0.001)。
集成机器学习适度提高了对甲状腺切除术特定结局的预测。SL 有望提供更准确的患者个体风险预测,以辅助治疗决策。